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SEARCH PATH EVALUATION INCORPORATING
OBJECT PLACEMENT STRUCTURE

1. INTRODUCTION

This report describes a robust numerical method for evaluating the search performance of
operations that involve a searcher looking for objects that are possibly arranged in a spatial
structure. The problem is motivated by applications in mine hunting, where individual mines are
sought in the search, yet the mines are believed to often occur with a predisposition to certain
patterns. The approach taken in this development builds on previous work in developing a
“theory of distributed search” for distributed sensing applications (references 1 and 2).
Probabilistic representations of spatial patterns for objects are combined with probabilistic
representations of a moving searcher to obtain a mathematically simplified representation of
cumulative search effectiveness over time. This context provides a parametric model of search
performance in terms of geometrical placements and sensing parameters. When applied to a
mine-hunting context, the searcher is the mine hunter and the objects are the mines. In
distributed sensing contexts, such as antisubmarine warfare (ASW), the searcher is the target of
interest and the objects are the distributed sensors.

The objective here is to construct a general search evaluation capability that is independent
of the search path generation process and that can be used to evaluate the relative performance of
alternate search path planning approaches. As such, the mathematical models developed must
encapsulate the underlying critical dependencies encountered in searching for mines, and little
more. Spatially dependent sensing performance, spatially dependent object likelihoods, and
overlapping search patterns are all examples of the non-trivial dependencies that are critical to
the mine-hunting application. By establishing these components on a mathematical probability
and numerical analysis basis (as opposed to reliance on application-specific detail), it is
anticipated that the dual problem of distributed sensing will be a simple extension of the search
evaluation capability. The application-specific components of mine hunting are then left to a
preprocess that translates them into the geometry, dynamics, and mathematical probability
descriptions that are used in the evaluation capability itself.

1.1 SEARCH THEORY IN HISTORICAL APPLICATIONS

The search for objects under motion given uncertainty is a classic problem in search theory
that has been well studied in the naval application domain (references 3 — 6). General search
expressions for the probability of successfully completing searches in nominal environments are
well known (references 3 and 4), and extensions to determine optimal search strategies in these
nominal environments have also been well established (references 5 and 6). This rigorous
theoretical basis is useful to understanding the basic structure of search evaluation, but becomes
numerically untenable (due to many complex integrals) in all but the most trivial of
environments.



The employment of search theories in analyses creates a meaningful mathematical mapping
from the descriptions of sensors, targets, and searchers to the probabilistic representations of the
expected outcomes of the search. By careful study of the probabilistic performance
representations, operational commanders are able to more effectively allocate resources to a
search, modify search plans, or create expectations on the length of time needed to achieve a
search goal. The extents to which these procedures are automated are the subject of many on-
going studies, and are not the topic of this report. However, for either a human or automated
decision-maker to make confident search decisions requires a robust capability for assessing the
search performance. When the scenario description is more complicated than the nominal
considerations found in standard theory, numerical methods must be employed to effectively
evaluate the search. The standard approach to dealing with the added complexity is to discretize
the search space to a level of granularity where each cell becomes a mathematically nominal
problem, and then numerically evaluate the combinatorial problem over the union of the discrete
cells. Such approaches do not scale well when applied to the size of complex military operations
and, thus, more computationally robust methods are required.

1.2 SEARCH THEORY IN DISTRIBUTED SENSOR NETWORK APPLICATIONS

The use of distributed sets of independent detectors in network formulations provides an
extension to classical search problems. In ASW applications, the fields of passive sonobuoy
sensors used to find moving targets are an example of such a network. In this context, the
detection events on the individual sensors are defined to occur over intervals of time, and the
occurrence of multiple detections over the sensor network is used to reduce the false alarm
probability. The set of detections must occur in a spatio-temporal pattern that is consistent with
expected target motion as the target traverses the field of sensors. While not a standard search
problem, it has been shown (reference 2) that an extension of the notion of detection with respect
to searcher activity provides a probabilistically meaningful description of sensor search
performance. These are then combined using statistical sampling techniques for multiple sensors
to accurately represent the total search effectiveness. In this search context the target is the
searcher (the moving object) and the sensors are the objects of search (the fixed objects). The
probability approach takes advantage of the spatial distribution of sensors as a prior on the
sampling process, and the distribution of expected target characteristics provides a marginal on
the performance of individual sensors over time. In an analogous manner, the mine-hunting
problem is similar, with the spatial distribution of mine locations as a prior on the sampling
process and the searcher characteristics given deterministically (equivalent to a delta function
distribution for the marginal).

In both the ASW and mine-hunting paradigms, object detection is said to occur with
probability Pp, if it occurs anywhere within a predefined temporal interval or spatial region

respectively. Let X, ={xj }:: be the set of positions of Ng objects (sensors) with detection radius

Ry. Letx, be the initial position of a moving searcher (target) randomly placed within search

space S — R? and traveling at known constant velocity vr. Then, the searcher position at
arbitrary time te[to,to +AT] for initial time ty and fixed interval AT can be written as



Xp(t) =X, (t)) +(t—ty) vy (1)

Let X4 be the subset of X, that falls within radius Ry of the searcher (target) trajectory established
over the time interval AT. Then,

X, = {x, € X /)| %, ~x; (O] S Ryst € (tg,t, + A1), 2)

Observe that

X, ={x, X,

) & eXslxj eQT},

J

{
{x‘ eXsl
{

J

X € XS| x;(t,) e Qj},

J

x;(tg) — (x; = (t=t,) - v, )| SRy, t € (to. t +A),

X; = (Xr(tg) +(t—t,) - vy) | SRy t e (to,t +At)},

3)

where Qr and {Qj },N=Sl denote subsets of S centered about the respective searcher (target) and

object (sensor) relative motion trajectories and extending in any direction to a distance of Rp.
This is shown graphically in figure 1 for the case of upward searcher (target) motion. Figure la
depicts the ensemble of these pill-shaped regions Q; originating at the respective object (sensor)
positions and extending downward. Figure 1b depicts a searcher (target) detection region Qr for
a single searcher originating at the initial position and extending a distance corresponding to

searcher motion over the AT time interval.
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In the former case, search performance is governed by computing the likelihood that a
searcher (target) placement will fall within the set of sensor regions. In the latter case, the
evaluation assesses the likelihood of object (sensor) placement within the searcher region. The
only difference between the two cases is a frame of reference for the observer; the search
performance evaluation in both cases is identical. The latter case is directly analogous to the
placement of mines within a searcher region, where for mine-hunting purposes the searcher
region is defined by the detection region associated with the mine-hunting platform search
trajectory. The natural performance metric for either representation is the probability of
successful search—that is, the cumulative probability of finding the intended object within the
region covered by the searcher. The underlying probability assumption is that object placement
is identically distributed (although not necessarily uniform) for each of the set of objects.

1.3 SEARCH THEORY IN MINE-HUNTING APPLICATIONS

The mine-hunting problem domain is characterized by several aspects that make it distinct
from both the historical search theory and the extensions to distributed search. First, when
considering the placement of stationary mines, the placement events are persistent. That 1s, once
a mine is placed, it remains in its initial location until some form of intervention occurs to
remove or disable it. Even if mines are properly identified, their presence remains in the sensor
observation space unless they are removed. Secondly, sensor observations often include the
detection of non-mine clutter objects (false alarms due to objects that are not the object of the
search). When such objects are detected, intervention may be required to properly classify them,
and the spatial density of this clutter over a search region can exhibit spatial variability.

The persistent placement event is fundamental to the search evaluation method described in
this report. It is consistent with the image feature processing conducted using side-scan sonars.
For any given sweep along a search path, a composite image comprising individual scans is
produced—see the example shown in figure 2, which shows a typical side-scan sonar mapping of
a swath of the ocean bottom and a search path conducted to find mine-like objects. The
detection assessments that are performed are retained until subsequent sweeps produce additional
features to process.

Figure 2. Example of Search Path Employing Side-Scan Sonar



The use of search theoretic methods to assess mine-hunting performance for finding random
mines distributed uniformly in a region has been well established (reference 7). However, for
new applications, additional factors must be considered in applying search theory to mine
hunting. The actual number of mines in the search region may be unknown. There may,
however, be limiting knowledge on the approximate number of mines in the region based on
intelligence data, and such data must be able to be used in a probabilistic manner. The
deployment of mines may not be identically distributed or even random. Mine field structure, if
it exists, or any dependencies on deployment such as bathymetric constraints drive the
interpretation of the expended search effort. Prior knowledge of mine field deployment patterns
is especially useful when inferring mine likelihood in the region surrounding identified mines.
Such patterns include barrier-like mine lines or sets of mine lines.

The effects of background clutter that can encumber the identification of mines must be
taken into account. Figure 3a illustrates a spatially variable clutter density map (contours) and a
numeric instantiation of mines (orange dots) and clutter (red and blue dots). Additionally,
independence assumptions on detection observations using multiple sensors or multiple passes
with the same search asset must be considered. The consequence of search path overlap must be
integrated into the search evaluator, as complex maneuvering characteristics may exist in
systems relying on fusion from multiple contacts to reduce the impact of clutter. Such a search
path for high density location interrogation is illustrated in figure 3b.

a
x 10
r

;

vds) .
X tys 10

a. Clutter and Mine Field Spatial Characterization  b. Kinematic Modeling of the Search Platform

Figure 3. Experimental Equivalencies

The objective in construction of this search path evaluation capability is to apply as much of
the prior knowledge on mine field structure as is practical and relevant, while retaining flexibility
in representing vehicle trajectories and sensor performance. The next section of this report
describes the development of the probability event spaces over which search evaluation
probabilities are calculated. This is followed by a description of the resulting search evaluation
realization in a grid-based design for numerical calculation. Results are presented to articulate
the performance of the evaluation capability in terms of its accuracy in probabilistic modeling
and its numerical efficacy.
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2. PROBABILITY EVENT SPACES FOR SEARCH PROBLEMS

This section provides the theoretical background on which the development of the search
evaluation methodology is based. A review of necessary background on probability spaces and
spatial Poisson processes is provided in appendix A. To facilitate the exposition, an initial
simplified event context is introduced and is progressively extended to obtain the event space
realizations necessary to provide an evaluation capability of sufficient utility. Necessary detail
on the construction of all the event spaces is provided to illustrate how it is utilized within this
tool for evaluating mine-hunting search path trajectories.

2.1 SEARCH FOR A SET OF KNOWN OBJECTS

A simple context is considered first to illustrate the event space construction. LetS R?
represent a geographic region in which to conduct a search for a set of certain objects. Assume
that the set of objects is finite and that each object is known to exist within this region. Let

M ={m,}"" denote the fixed set of objects placed within S, and let x, = <x Y j> €S be the

location of each m;. Furthermore, assume that these locations are unknown (hence, the need to
search) and let each x; be an independent random variable placed in S with probability density

function fj(x;) for x; €S, and zero otherwise. Then, <x, 33 g xNM> represents an Ny-dimensional

vector on S™ with probability density function
NM
f(xl,...,xNM)zr[lfj(xj). 4)
)=

The independence assumption between the placement random variables implies that each fi(x;)
represents the marginal distribution of x; on S. From this construct, the event space associated
with the placement of a single object in S is considered.

Let A c S be a sensor scan region within S in which one attempts to detect the objects M.
The probability that an object m; lies within A is given by

Pr(x, e A) = [, f,(x))dx, =P, . (5)

Since the set {x; € A,Xx; & A} forms a partition of S into the scan region A and its complement

S\A, the probability that the object is not in A is given by

Pr(x; ¢ A) = [, f,(x;)dx, =1-P, . (6)

J.S/ A
This search experiment in A has two possible outcomes over a decision space 2D = {d, d}

corresponding to detection of the particular object or non-detection. Continuing with the
assumption that object m; lies within A, the detection event d, =d is defined to occur with



probability Pp = Pr(d, = d | x; € A) and the non-detection event d; = d to occur with probability

1-Pp= Pr(d, = d|x ; € A). For this context, object detection is restricted to the scan region
and independence between placement and detection outcomes is ascertained. The joint
placement-detection outcomes <x Jv,dj> are elements of the product space S x 9P, which is

partitioned as {x; € A, x; & A} x {d,d}. The event space F=o({x; e A,x; g A}x {d,d}) becomes

the c—algebra generated by this partitioning. Using Bayes theorem (reference 8), the probability
of detecting object m; in A becomes

Pr(x; e A,d; =d)=Pr(d =d|x; € A)Pr(x; € A)=P,P, . (7

The remaining partition probabilities are calculated in similar fashion:

Pr(x; ¢ A,d =d)=Pr(d, =d|x; ¢ A)Pr(x; ¢ A)=0-(1-P,)=0, (8)
Pr(x; ¢ A,d =d)=Pr(d =d|x; ¢ A)Pr(x; ¢ A)=1-(1-P,)=1-P,, 9)
Pr(x; € A,d, =d)=Pr(d =d|x; € A)Pr(x, € A)=(1-P, )P, . (10)

Observe that non-detection of the object outside the scan region is, by definition, a certain event
(as per equation (9)) and that the probabilities over all outcome partitions sum to unity. The
latter occurs because a partitioning of S x 9 produces subsets that are both mutually exclusive
and collectively exhaustive.

The event space is extended by partitioning S into multiple scan regions. Following the
analysis conducted in reference 7, the search space is divided into a set of identical disjoint
search regions where each region constitutes an independent scan for objects. An example
partitioning is illustrated in figure 4 as a set of rectangular search regions. This type of
partitioning might be provided for covering a rectangular search space with a side-scan sonar.
The actual shape of these disjoint regions is arbitrary as long as their union realizes the space
covered by a non-overlapping search path over which the search effectiveness is to be evaluated.

\
Scan Region A; Search
with Area a > Space
S
e
.

Figure 4. Search Space Partitioning



Let { A} be an exhaustive partition of the search space S into a set of disjoint scan

regions of equal area a;. Throughout the sequel, the area of region A; is represented as a;
according to

a, =|A|= [ 1dx. (1)

The probability that object m; lies in region A;, fori=1, ..., Ng, is

Pr(x; € A)) = [, f(x))dx; =P, , (12)

where it is recalled that fi(x;) is the location probability density function for object m;. Since the
partitioning is exhaustive over S, the placement of object m; in S is certain and

Pr(xjeS)=%ﬁ,Pr(xjeAi)=_§PA‘=1. (13)

For the moment, assume that placement and detection outcomes are independent for each scan
region. Then, as above, the probability of detecting m; in A; becomes

Pr(x;e A,,d =d)=Pr(d, =d|x; € A))Pr(x; € A;) =P,P, . (14)

For notational simplicity, let E; denote the joint event E, = {<x j,dj> |x; €A, d = d} representing
the detection of an object that exists in region A;. Then, Pr(E;) = P,P, and the probability of
not detecting object m; in A; becomes Pr(E,)=1- P,P, , where E= {(xj,dj>|xj gA ud # d}

denotes the set complement with respect to the event partitions. Note that Pr(E, "E,)=0,i#k

as random variables are single valued in any specific realization and the scans are mutually
exclusive. However, also for 1 #Kk,

Pr(E, NE,) = Pr(E, UE,) = 1 - P(E, UE,) = 1-P, (P, +P, ). (15)

For search path evaluation, let Sp denote a search plan comprising a subset of {A ; }f‘_‘l . That s,

S, ={A, }ielp , with Ip representing the indices corresponding to those scans conducted in a partial

execution of the search plan.

Now, assume that any scanned region is searched only once. Then, the probability of
detecting m; in one of the set of disjoint scans comprising Sp becomes

Pr(UE,}:Pr(xje UAiﬁd,=dj=PDZPA|~ (16)

ielp ielp ielp



Observe that when Sp includes all the possible scans of the search space S, then
Ny
Pr(UEij:Pr(xjeSmdj=d)=PD-l=PD. (17)
i=1

If the search is definitive in that the entire space S is searched and Pp = 1, then the object m; must
be found. This is shown below in the sequential update of the probability of finding object m; in
scan region k+1, given that it was not found in the previous k scans:

Pr(EkH | hElj = 1 P Pr(EkH l rk]Ei)a

0
—
Y G ¥
i
|

Akol

k - k 2
J 1-P,>P, 1-P,>P,
= =1

k+1
ij 1-P, 3P,  pp (18)
=1_ i=1 =

I
1
.
es]

~

-
€ \
Ti

For this definitive search case, the probability of detecting object m; in the last scan region A ,

conditioned on not finding it in any of the other regions becomes a certain event, is

Nyl P P 1-P
PrEy |[E |=——2—= e o1, (19)
Ng 1 Ng-1 l_l(l_P )
1-P, D P, Ans

i=1

i=1

which is as expected.

Next, to construct a more-general event space for search evaluation, some of the
constraining assumptions are relaxed. In particular, the requirements on the independence
between placement and detection, the requirements on spatial invariance of the detection
probability Pp, and the requirements on single-scan detection assumptions are removed. To do
this, a search space partition is constructed that is a refinement of the partitioning according to
scan regions. Specifically, the search space is partitioned into a uniform grid over the placement
position coordinates, and probability cells are defined about the grid points. Then, as above, the
probability that object m; lies within grid cell (k,1) is given by

Po,, =Pr(x; €Gy )= [ f(x))dx;. (20)

Since the probability density function f(x,,...,Xy ) is defined to have support on S, the

detection probability conditioned on placement within grid cell (k,I) becomes

10



Pr(d, =d,x;€G,,) o, Pridy=d|x)f;(x;)dx;
Pr(x; € G, ) Ja,, £i(x))dx; ’ (21)
- IGk.l Pr(d.l =d | xJ')fj(xj | A = Gk.l)dxj'

Py,, = Pr(d, =d|x, <G, ) =

The term Pr(d; =d |x;) represents the traditional sensor performance prediction of the

probability of detection. Observe that, if sufficient resolution in the grid spacing is attained such
that f,(x; |x; € G,,) is nearly constant over the grid cell, then

[ Pr(d =d[x)fdx, [ Prd =d|x,)dx,
. k.l ~ k] 5 (22)

~

fdxj IGk,,|

Dy,

Gk.l

where |Gy | is the area of grid cell Gy, as given by equation (11). Thus, with a fine grid
resolution P;, ~reduces to a spatial average of the detection probability over the grid cell.

Conversely, if the grid resolution is coarse relative to fi(x;), then the dependency between the
detection and placement probabilities is imbedded within the calculated values in the form of the
weighted average of equation (21).

For P, < 1, there is a probability of 1 — P,, that object m; will not be detected on the first

scan opportunity. It may, however, be detected on subsequent passes if the search path crosses
(or overlaps) its own trajectory. Let I, = {ip},ip e {1,...,N4} denote a scan sequence that may

include repeated scans. By modeling each scan’s detection observation as an independent
Bernoulli trial, the waiting time W (in terms of numbers of scans before detection occurs)
follows a geometric distribution (reference 8). That is, the probability that the first detection of
object m; will occur in cell (k,I) on the nth scan becomes

Pr(W =n)=P, (1-P, ). (23)

The succession of first occurrence probabilities develops sequentially as repeated scans are
included in the search plan. Let d,(n) =d denote the occurrence of the first detection of object

m; within scan n and d,(n) = d denote the occurrence of no detections of object m; through the

first n scans. With initial values

P, (1)=Pr(d(1))=d|k,) =P, (24)
and

P, )=Pr(d,()=d|kD=1-P, , (25)

the scan progression updates for n = 2 and beyond are given by
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P, (n)=Pr(d(n)=d|k)=P, P (n-1), (26)

and

P, (n)="Pr(d(n)= dlk,)=(01-P, ) P, (n-1). (27

Observe that P, = 1for definitive search detection probabilities. In that case, all subsequent

first detection probabilities in the sequence go to zero, as expected.

Without loss of generality, the cell detection probabilities can be developed based solely on
a geographic basis to reflect dependency on the acoustic environment. They can also be
developed as functions of a predefined vehicular search path to incorporate dependencies on
proximity to the sensor. In more complex cases, any combination of geometric reference and
search path for one or more sensors may be applied. For situations with specified vehicular
search paths, the detection probability may need to be recalculated for each subsequent detection
experiment as proximity to the sensor changes—this is reflected in the form of the sequential
update. For situations with a strict geographic reference, the detection probabilities need to be
calculated only once.

Given the cell detection probabilities, the event probabilities defined for the scan
partitioning are evaluated over the grid partition. Let I; designate the indices of the grid cell
elements contained within the scan corresponding to event Ei. This event may comprise any
component of the search plan under evaluation and may possibly overlap other scans executed
within the search plan. The probability of detecting object m; within this scan is calculated by
aggregating the probabilities over the grid partition refinement, as in

PHE)= T P, (n(kD)By - (28)

(k,hel;

This calculation accommodates scan overlap at the grid cell level. That is, first detection occurs
for a specific grid cell if it occurs anywhere within that grid cell. The scan sequence probability

Pd-kI is retained individually for each grid cell element (k).

The event space definition for the case of a known number of objects is completed by
considering the detection over the finite set of Ny objects. An inference is drawn over the set of

objects M = {mi }2}‘ by constructing event spaces pertinent to the probability question under

consideration. Consider the probability of detecting all Ny objects in S, which is known as a
clearance probability. Let

N

Eo =({(x,,d) %, €A.d =d} (29)

<

-
N
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represent the joint event that all objects lie within the scan region A; and are detected. This joint
event forms a partition over S™ x D™ whereby each S x D subspace is partitioned identically
according to the search plan. Hence, unlike the previous calculations where only the subspace
under consideration was partitioned, the entire outcome space must now be considered to
calculate the probability that event Ec; will occur; specifically,

Pr(Eg) = rﬁpr(xj €A,d=d)= Tq[ > P (n(k,D)- ngl : (30)

i=1| (k,Del,

In this expression and throughout the sequel, the dependency of the grid cell probability
calculations on the respective fi(x;) is implied. To calculate the clearance probability, the search
region probability is calculated in each subspace and combined in the product as

Pr(Ec) = [ [Pr(x, €| JA, nd, =d) = ]N’[{Z ZPjU(n(k,l))-PéLl . 31)

ielp j=1 [ ielp(kDel,

This is a consequence of the assumption of independence between object placements. When the
respective fj(x;) are identically distributed,

Pr(EC)z[Z 3 Pdl‘l(n(k,l)).PG“} B (32)

ielp (k,Del;

Next, consider the event space corresponding to the detection of one or more objects in M.

Here, the same partitions formed over S™ x D™ as used for the clearance probability are again
used. Let

Ep = U{(x,4) %, € Apd = d} (33)

J=

represent the joint event that at least one of the Ny objects lies within scan region A; and is
detected. Since multiple object placements are defined to be mutually independent, set
complements are applied over the disjoint partitions of the outcome space to get the joint
probability. In particular,

N

Pr(E,)=1-Pr(E,)=1-[1Pr(x, & 4 Ud, #d)

J=1

(34)
=1—H(I—Pr(xj cd.d =d))=1—ﬁ'(1—[ ) Ri{,(n(k,l))-Pg“D.
j=1 : j=I (kDel, * '

To obtain the probability of detecting at least one of the Ny objects in a partial search plan, scan
probabilities are again aggregated and combined. As above, when the fj(x;) are identically
distributed,
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PHE: )—l—ﬂPr(x ¢ UA, vd ;th—l—(l—{Z > P, (n(k,])-Fg D ) (35)

ielp ielp (k,Del|

as the probability of detecting at least one of the Ny objects.

This section concludes by focusing on the case of identical placement distributions, as it
illustrates an interesting property of this event space. In this case, the detection of each of the
respective objects within the search path is an independent Bernoulli trial. Let p be the
probability of finding an object in the search path:

p=% ¥ P, (n(kD) P, . (36)

ielp (k.Del,
Then, Pr(E.) =p™". Similarly, with q=1—p, then Pr(E;)) =1—q"* or, equivalently,
Pr(E,) =q"". More generally, let Ny be the number of objects detected in the search path and

E . be the event in which Ng = m occurs. Assuming that the order of object detection is

unimportant, the probability of event E _, occurring is given by

Pr(Ey, _,,) = Pr(N, =m)=(N )p"‘qN“ . 37)

Thus, the assumption of identical distributions in the placement of objects leads to a binomial
distribution on the number of objects detected in the search path. While this event labeling has
changed to a count indicator, the event space has not changed. Hence, Pr(E.) = Pr(N, = N)

and Pr(E,)=1-Pr(N, =0). Note that for sufficiently large Ny, as Ny — o0 and p << 1 such
that A, = N, - p remains finite, then

)=Pr(N =m)zMe % (38)

Ngy=m d m'

Pr(E

by the Poisson approximation to Bernoulli trials (reference 9).

It is important to note that with identical placement distributions, the calculation of search
effectiveness probability is effectively reduced from an operation on the S™ x D™ outcome
space to an apparent operation on S x D through a functional composition. That is, the repeated
operation on S x 9D is embedded in the functional forms of equations (32) and (35). Hence, the
mappings are equivalent.
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2.2 SEARCH FOR OBJECTS ARRANGED IN A PATTERN

Now, consider the construction of event spaces in the search for objects placed in predefined
patterns. When objects are placed in these coordinated positions, they no longer exhibit the
property of mutual independence. Indeed, the more distinctive the pattern is, the more
interdependent the object placements become.

Continue with the paradigm of placing the set M of Ny known objects in the search space.
Now, however, the general form of the joint probability density function is expressed as a
product of conditional densities, using Bayes rule:

NM
f(x,,...,xNM )=1£,(x,) _]'[ij(xj [ SPRCEE, oy 39)
J:

Here f,(x,) denotes an unconditional initial object placement. This form for the joint density

highlights dependency on objects previously placed in the pattern. When a sequential placement
depends only on the previous placement, the joint density takes the form of

f(x,,...,xNM)=f,(x,)ﬁfj(xj|xH,). (40)

Such placements often occur when objects are deployed in sequence from a moving platform,
such as a ship or aircraft.

In the joint probability density formulations of equations (39) and (40), the object ordering
is specific and indicative of the applied deployment strategy. Alternately, placement may be
structured about a common fixed reference point, as illustrated in figure 5. The reference
position may constitute a general drop location in a compound experiment in which the structure
is placed in the search space as a unit. For this case, there are 2Ny + 2 degrees of freedom
realized in the field and object placement—two degrees of freedom for the general drop and two
for each of the Ny objects relative to the unit center. The joint object placement density is
obtained through marginalization over the field placement variable:

f(xl,...,xNM): Js f(x],...,xNM | B M (X Y OX s

Ny (41)
= IS {I:[]fj(xj | xref):|fref(xref)d‘xref'

With this modeling paradigm, object placement is conditionally independent within the structure
but reference point dependent over the search space.
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a. Sequential Placement b. Reference Point Placement

Figure 5. Object Placement Conditioning Variables

The properties of this object placement formulation are now examined in more detail. The
patterns depicted in figure 5 are characterized by a separation between objects. Assume that

object placement is restricted to occur over a set of regions Q = {Q ; }:T , such that
x;€Q,,x,¢Q,j=L...,Ny,i#]. (42)

The set Q constitutes the disjoint regions in R* over which the reference conditional probability
density functions fi(x;| X.r) have support; that is, fi(x;| Xrf) = 0 for x; & Q.

Assume that the reference location X, is given. Let the regions

Rj=anLIJA|, (43)
for j = 1,...,Nu, denote the intersection of the conditional support region with the partial search
path. Then, the reference conditional clearance probability becomes

Pi(E;

Ny
xref) = l_—lPr(xj € UA| mdrj = d| xref) 4
= ielp (44)

=11 fu Prd = d|x))£,(x, | 5,0 ) dx,.

ref

e

Here, the detection probability is considered to be independent of the reference point placement:
Pr(d, =d|x:%,)=Prld, =d|x). (45)

The clearance probability is obtained by taking the expectation of equation (44) with respect to
the reference placement random variable x.f as
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Pr(EC) = IS Pr(ECl xref)fref(xref)dxref’

NM
= Is [E IRJ Pr(dj = d‘xj)fj(xj xref)dxj:lfref(xref)dxref’ (46)

= [y un, FQEaee g, )Py, = d|xy,) dxy, ..., Pr(d, = d|x,)dx,.

Note that the latter form of equation (46) operates over the reference marginalized probability
density function. In similar fashion, the conditional probability of detecting at least one of the
objects becomes

N

(i- J, Pr(d, = d|x) 1, (x,

=

Pr(ED) =1- J.S |: xref)dxj):l fref(xref)dxref’

Ny
=1—;s[l‘ X5, Pr(d, = d| %) £, %, dx,

Ny Nu
+ 3 3 J, Tr, FO8 X, | X Pl =d|x;))dx;, Pr(d, =d|x; ) dx, (47)
Ji=t =t i

1¥)

— a8 ]fref (xref )dxref’

= [ ya, Pr(d, =4 x)[% fj(x)} dx -C,

ielp

where the product of reference conditional complement probabilities is expanded into a linear
combination of joint probability calculations of the form used in equation (46). The parameter C
denotes the remaining terms of this finite alternating series beyond the additive component.
Hence, the latter form is constructed to denote an unscaled mixture minus a non-negative
correction term. For a given search path, the reference conditional probability density functions
fi (x; | Xref) can change significantly with reference location. In general, the component integrals
in equations (46) and (47) are distinct for each object m; in M, and functional composition cannot
be applied as in equations (32) and (35).

Consider as an example a structure comprising Gaussian components placed about the
common reference point X.r. Let X; = X + AX; designate the intended position of object m;
with displacement Ax; from the reference. Assume that the structural alignment of the group of

objects does not change as the reference point Xf is moved within S. Let each object’s
conditional placement be distributed as x; ~ N[x j,Ich,] and assume that o, << ‘Q j| , such that

any probability mass outside €); is negligible. Then, forj=1,...,Num,

f.(x;

1 1 5 A
xref)zmexp _20 ((xj—xj)z+(yj—yj)2), xjer, (48)

2
p p
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and the joint conditional density takes the form
Ny
(X500 Xy, | Xor) = an’(xj | %)
ri

l, N exP[‘ : Nz“((xj—)zj%(yj-yj)’)]

= T
2no; Op

(49)

Now, let the reference placement density also be Gaussian, with x , ~ N[X,,1,07,]. Following
the derivation presented in appendix B, the unconditional joint density is given by

1 p2 1 Ny A KD A w2
(X X ) = P lexpi—— Xt F Yo (=)
om0

P

(50)

1 1 Ny R 2 Ny R 2
X eXp< — e X —X. | + -y s
-z e | B0 +(B0-9)

where p, =o, /0, represents the ratio of individual object placement and group placement

standard deviations. Note that the x and y Cartesian coordinates associated with any given object
location are uncorrelated. However, the correlation between any two distinct object locations in
either coordinate direction is given by the coefficient

5., 2
p(le’xj:): Wb 20-rct —= l = (5])
0,0, ©O,+0, l+p,
Such correlation highlights the loss of independence in object placement for this jointly Gaussian
context.

Observe from equation (51) that when pf, >>1 the correlation between object locations is

very small. This happens when field placement is very specific or when its location is inferred
via the fusion of identified object locations. For this case, the independence of component
placement can be assumed and

1 ; ’
2n]0§(1 o4 l/pi)exp[_m("j — X ’Ax_i)-],
1 1 .
chxp[— 757 (XJ- — Xy —Ax}_)’}

o p

£,(x,)= [
(52)

However, the object locations are not identically distributed. The distinctiveness of the
component densities is governed by the size of the reference point displacements relative to the

drop uncertainty. Identical distribution of components can be assumed only when leJI << 0,.
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Generally, the structure is assumed to be composed of distinct objects. Conversely, as pf, zgl,

the field placement uncertainty dominates and the referenced marginalized components become
highly correlated but approximately identical in form. In such a case, the search problem
devolves into one in which the structure itself becomes the object of the search rather than
individual objects within the structure.

These two limiting conditions serve as a basis for search evaluation under a restricted type
of placement. Specifically, the likelihood function for a single object placement is developed,
where knowledge of field structure dictates the shape of the single placement density. Within
this likelihood context, the capability to form accurate predictions regarding multiple detection
events is lost. However, a performance assessment on the next detection probability can still be
attained for search path comparison. To do this, the projection of the reference conditional
probability density function onto a single object placement space is modeled as a mixture
density. Hence, the single object placement paradigm reverts to an independent, identically
distributed sampling context. Each component of the mixture density corresponds to one of the
plausible object locations defined for the field structure:

N
fm(x|xref)=ifmj(x|x,ef,mj)Pr(mj). (53)
j=1

This reference conditional density function has support over general coordinates x € S. The
unconditional density is produced via marginalization over the field placement variable, as in
equation (41), to yield

f (x)= js [ifmj(x

xref,mj)Pr(mj)}fref(xref)dxmf. (54)

In the mixture model, Pr(m;) denotes the mixture weight corresponding to the occurrence
probability for object m;. For equation (53) to represent a proper probability density function, it
is required that

%Pr(mj)zl, (55)

which is achieved through a renormalization of the individual object occurrence probabilities.
The density function in equation (54) can be used to compute both the clearance probability
and/or the probability of object detection in a manner analogous to equations (46) and (47),
respectively.

The detection events for this construct correspond to an unstructured field placement. That
is, an object can occur at any location covered by the mixture density. However, the formulation
does allow for multiple instantiations occurring within the same reference field component. This
is especially relevant when identical distributions are assumed in placing Ny objects in the
search space. As for the unstructured placement case, when equation (35) is applied to
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determine the next detection probability, the same functional composition effectively reduces the
numerical computation from the S™ x D™ event space to the S x D subspace.

Next, the performance assessment on the next detection probability conditioned on a
previously identified object is developed. The probability question now becomes finding the
likely location of objects given that one of the objects has been detected and identified. Let us
presume that it is unknown as to which of the ordered objects is the identified one. Let xiq
denote the location of the identified object. The identified object location is related to the
reference point location via

X, =X

id ref s Axi i xei = ii + xei ’ (56)

where x,, =x—X; ~ N[0,1,57] denotes a random placement error (assuming object m; as the
identified object). Assume identical error distributions f(x) for each component. Then,

£, =X+ =X, +AX, A%~ X, (57)

and the conditional placement density function for object m; takes the form

fmj(x|xid,mi,mj) = L f(x—x, —Ax; +Ax, +x,)f,(x,;)dx,;. (58)

These density functions (for the various m;’s) combine in a mixture form as in equation (53).
Marginalizing over the field components for the identified (m;) and anticipated (m;) components
yields the identified object placement density function:

Cax) = [ | 2036 (x| x,0m,m,) Pr(om, | m,) Pr(m, ) | (x =, dx (59)

Generally, the mixture weights are not dependent on object location. However, if the
contribution of a hypothesized component to the mixture is disallowed to enforce object
separation, then the conditional mixture weights must be renormalized as

Pr(m))

Pr(mj|mi)=m,

i# (60)
to guarantee a proper probability density function.

2.3 SEARCH FOR AN UNKNOWN NUMBER OF OBJECTS

When the actual number of objects for which search is conducted is unknown, the search
performance evaluation must apply scrutiny over any object placement information that is given.
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In the absence of any prior knowledge on the number of objects or the placement strategy, it is
left to evaluate the search effort alone. Anticipatory knowledge on placement number may come
in different forms, one being the expected value of the number of objects placed. To use this
knowledge in developing the joint placement probability, object placement is modeled as a
spatial Poisson process.

A review of spatial Poisson processes is provided in appendix A (section A.2), and an
excellent overview of Poisson processes is given in reference 10. The use of Poisson processes
in search theory is well studied (reference 11); they are used extensively in modeling false
alarms. In summary, probability mass is assigned to every possible value of the non-negative
integer ny according to the known intensity function A(x). More specifically, for any given
A c S, the probability of finding N(A) objects is given by

PHN(A) =0, =™ M. (61)

i[9

When A(x) is not constant over the space S, placement occurs as a non-homogeneous spatial
Poisson process. The coloring theorem (see appendix A, section A.2) allows us to “paint” the
occurrences of objects within the space according to any independent criteria, such as detection
or classification. When objects are colored according to detection and non-detection, the result is
a pair of independent spatial Poisson processes.

The detection probability recursions provided in equations (26) and (27) for multiple scans
of a given location can also be applied to the spatial Poisson process. At a location x €S, the
probability of detecting an object after n previously unsuccessful search passes yields the
detection coloring

y(x,n) =P, (x) - Py (x,n 1), (62)

where n corresponds to the n™ passing of location x along the search path. The detection
intensity function for the entire search path coverage follows as

Ay (x) = K(X)gv(x,j) =Ax)-7,(x), v,(x)= %Y(X,j) : (63)

The subscript n notation is used loosely here. The intended meaning is that for any x, n(x) is
incremented with each succeeding search pass that includes x, and spawns yet another set of
independent spatial Poisson processes over the repeated search region. Over multiple passes, the
superposition theorem is applied to aggregate the intensity functions and A,(x) denotes the
aggregated intensity. For the given search path, the probability of finding objects within the grid
cell Gy then takes the form

Pr(Nk,I = nM)= g (G ——(}»n(Gk’l ))nM . (64)

|
ny.
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As cells form disjoint sets in S, the independence of each N(Gy ) allows us to develop the
aggregate number of detections N; encountered over a partial search as

)\{ M
Pr(Nl :nM):e’x“’ Q—, (65)
. n,,!
where
M =A(UAD=| 2 A(Gy)) z[,z 2i Pd“(n(k,l))-?wk_l] (66)
ielp (k.l)e‘i.]JPAl ielp (k,Del;
and
Ay = jG A(x)dx . (67)

Note that these expressions assume a grid cell resolution that is fine enough to allow assumption
of constant coloring within the grid cell.

As in equation (35), equation (65) provides the basis for calculating the probability of
finding at least one object along the partial search path as

Pr(N, 21)=1-Pr(N, =0)=1-¢ ", (68)

Ip

The Poisson process model assumes that the state variables x; are identically distributed, leading
to the equivalent probability representations of equations (38) and (64).

Next, the probability of detecting m objects, conditioned on a known number of objects ny
in the space S, is examined. Observe that, for a given number of objects N(S) = ny in S,

Pr(N{E) =1, J= " M (69)

n,,!
N(S) can be decomposed into its detected and undetected components:

N(S) =Ny (S)+ N;(8) =Ny (| JA) + Ny(S), (70)

where it is recognized that detections can occur only within the partial search path. Similarly,

the object intensity function A(x) is decomposed into its detection and non-detection components
as
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AX) =7, (OAX) + (1 -7, (X)DAX) = A, () + A5(x),
(71)
Az (x) = A(x) =2, (X).

As the detection and non-detection processes are independent, it follows that the probability of
detecting m objects within the partial search path, given ny objects in S, becomes

IEIP

’

j: Pr[Nd( UAij = ijr(Na(S)= n, —m)

Pr[Nd(‘UAi) =m|N(S)=ny,

IEIP

Pr(N(S) = nM)

| g __(KIP )m_ e A y) ()\.(S) - }”lp )nMim ) ()"(S))HM
m! (T =m)! Oy, ) (72)

- ny! (}‘Ip)“(}"n(s)_klp )DMvm
~ m!(n, —m)! (M(S)™

_(ny }‘1,, m | ?»,P -
“m L) AMS) S
As expected, the expression in equation (72) is the same as equation (37), with the
probability p represented by a ratio of intensity function evaluations. Equations (36) and (66)

highlight another interesting property of the intensity function A(x). Recognizing the rate N of
object placement in the space S as the integral

A(S) = js A(x)dx =N, (73)

and then normalizing A(x) by this factor yields the probability density function

f (x)= M_ . (74)
j Mx) dx
Hence, the intensity function ratio of equation (72) takes on the form of equation (37) with
" N- [, va(0-f, (x)dx .
p = P = el — ~ P (n(k,l))P . (75)
A(S) N iel,,(kéli % s

In general, a A-decomposition can be performed on any intensity function to yield a probability
density function for single object placement.

The application of the spatial Poisson process above enables the modeling of identically
distributed object placement when the actual number of objects place is unknown. It is also
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consistent with the formulation when the exact number of objects is known. The required input
is in the expected rate of occurrence over the space S. As a consequence, the search evaluation
procedure can model spatial variations in object placement and sensor detection performance.
The model can also ingest prior knowledge of field structure when the restricted context of single
object placement is applied. This can be done for the case of identified objects or for the general
application of drop reference and drop preference priors.

To construct a general object density function to be applied in the evaluation of search, let
us start with a random mine placement component Ag(x),

A (x) =N, - (x), (76)

with an expected number of randomly placed objects of N . This intensity function presumes

independent and identically distributed object placements. Let Aip(x) denote the intensity
function associated with a single identified object located at x;p. Then,

)\’ID(X)=N—ID fip(x), (77)

where the form of fip(x) is that of equation (59). The parameter N, specifies the expected

number of undetected objects remaining within the field structure. As noted in section 2.2,
independence can be assumed if the positional uncertainty of xp is small relative to the field
structure. That is, the next detection event could occur anywhere in which fip(x) has support.
The identical distribution assumption is valid as long as detection events are restricted to the next
detection. If additional objects affiliated with this structure become identified, then A;p(x) and
fip(x) would need to be updated before they can be applied again.

Consider the field prior Ayp(x) associated with object placement in the space S given a
disposition to place objects in the designated structure. This intensity function has the similar A-
decomposition

by (xy =N Fel(X) < (78)

For this case, the parameter N, can take on several meanings and its value must be set

according to the intended assessment. Let fyr(x) take on the form of equation (54). As
discussed in section 2.2, while the reference conditional density of equation (53) is conditionally
independent, a large drop preference region will induce a high degree of correlation between
objects that are placed first in the structure and then mapped to S. Thus, independence in
placement does not hold. However, independence does hold in the placement of the structure
within S. Consequently, N, can be set to indicate the expected number of field placements.
The actual number of field placements may or may not be known. If known, then the density
fmr(x) is applied directly in the search evaluation to assess the probability of finding the
structure. If unknown, then the spatial Poisson process of equation (78) is used. Furthermore,
field presence assessments can be conducted separately from next object detection probability
evaluations. As every field instantiation must contain at least one object, limiting values for
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N, can serve as a bound on the next detection probability. An approximate measure of
performance can be achieved using the product

Ny = Np+ Npys (79)

where N, denotes the expected number of fields and N,, denotes the expected number of

objects within the field. Care must be applied in deciding how to set these parameters. The size
of the field structure relative to that of the drop preference density function and the size of S
should be considered. Development of the methodology to set this number as a function of the
field prior content is the subject of future investigations and is not discussed further.

Lastly, an aggregate intensity function can be developed as

A(X) = Ag (X) + A 1p(X) + Ay (X),

i _ _ — (80)
=Ng fRr(X)+ Ny fip(X) + Nyyp - £ (X) = N - £ (x).

This object intensity function summarizes general object placement conditions. Here, N
denotes the total expected number of objects in S regardless of source.

2.4 ADDITIONAL CLEARANCE CONSIDERATIONS

Clearance implies the absence of undesirable objects within the space S. The probability of
finding Ny known objects is given by equation (31) or equation (32), depending on the
distribution of objects. While clearance implies the neutralization and/or removal of objects
from the space, for the purpose of search evaluation, it is assumed that detection implies
neutralization. That is, the probability of detection becomes the clearance probability as once an
object is found it is incumbent on the searcher to determine how to neutralize it. More generally,
other factors need to be considered for neutralization probability. Equation (46) provides the
clearance probability when the field structure is known. This calculation, while specific in form,
is often difficult to calculate in practice and may lose relevance when precise knowledge is
unavailable. Equation (68) provides the probability of next object detection for the general case
of an unknown number of objects. As the expected number of objects in S diminishes, this
calculated value decreases. In the absence of new detections as the search plan is executed, a
threshold can be applied to indicate a degree of clearance. Should an object become detected,
the calculation must be reset and the search conducted over again.

Clearance probability can also be defined relative to the search space S. To accomplish this,
the A-decomposition of the aggregate spatial Poisson process is used and the placement
conditional probability density function Pg, as defined by equation (20), is operated on. Recall
from equations (25) and (27) that non-detection (P; ) is defined globally over the space using a

rectangular-grid partitioning of S. The calculated value of this probability is conditioned on
object placement within the grid cell and the number of independent searches conducted over the
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cell. Define E z, 3 the event that an object exists within cell Gy and is not detected, and define

E as the event that an object exists in S and is not detected. Rewriting equation (27),

NSk.l

Pz, =Pr(Ez ) =1 H[l = Pok..(ﬂ] ; (81)

where N  denotes the number of times that the cell is interrogated. The probability of event

E; occurring is calculated through a marginalization over S, as

PiE;)= ¥ P

T (82)
(kheG *! s
A single object clearance criterion is then constructed as a threshold on the probability of the set
complement of this event:

BB J=1= ¥ B «B; - (83)

(kG *!

Equation (83) provides the probability that if there is an object placed within the space S it
would be detected. The density function Pg provides the basis for calculating a weighted
average of the individual cell non-detection probabilities based on the spatial variability of
sensor characterizations. When Pg is insufficiently defined, a diffuse prior on placement can be
applied, yielding the unweighted average. As a statistic of the detection event, Pr(E,)

represents an evaluation of the search effort applied over S, rather than a measure of the
likelihood of finding an object within S. Greater scrutiny on the clearance condition can be
achieved by thresholding the criterion at the grid cell level in lieu of the aggregate statistic. For
this case, if the threshold probability is not attained anywhere within the grid, then it is not
attained over the space. This is equivalent to thresholding the probability test statistic:

Pr(E,, ) =minPr(E, )=1-max|P; P, |. (84)

k,leG
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3. SEARCH PATH EVALUATION

Drawing heavily on the development of probability event spaces presented in the preceding
section, this section describes the design of a grid-based search path evaluation capability. The
general requirements for this capability are fairly simple—the methods must be general enough
to support evaluation of a variety of alternate search path generation techniques yet specific
enough to provide realistic assessments for scenarios that exhibit a high degree of contextual
complexity. For the mine-hunting application, this includes the adoption of spatially varied mine
and background clutter densities and environmentally dependent sensor performance
characterizations. The evaluation capability must be applicable when the number of mines in the
search region is either known or unknown. In addition, the capability must support search
evaluation in situations with uncertain descriptions of mine field placement structure.

3.1 GENERAL SETUP OF THE EVALUATION SPACE

Let S = R? represent a physical region in geographic coordinates and over which the search
for mines is to be conducted. A grid is developed over these spatial coordinates to a resolution
that accommodates the natural variability in mine placement strategies that occur due to
dependencies on bathymetry, bottom composition, and geographic context (such as the proximity
to harbors and shipping lanes). For simplicity of illustration, a square grid space is constructed
with a rectangular fessellation, as illustrated in figure 6. However, the grid need not take a
rectangular shape nor must the space be uniformly sampled. This simpler realization places
emphasis on development of the underlying likelihood structure over which the probabilistic
inferencing is conducted. Probability calculations are performed over the grid

G= { x=(x,y) €S| x =+(k-1/2)AX, y = #(m -1/2)AY, (k,m) = 1,...,Nmax} defining the set of

geographic coordinates in a square of side length 2NmexAX and equal spacing AX = AY centered
about (x, y) = (0,0) . Hence, 4Nmax2 grid points are used to construct the space. Probabilities are

updated sequentially at a time sampling that is specified to occur at regular intervals
T={t, |t, =t, +iAT,i=0,l,...,I }, where time to indicates the start time of the search. The

sampling interval AT is constrained to be sufficiently small relative to vehicular dynamics such
that the search trajectory over this interval is approximately linear. However, the constraint of a
small and uniform AT can be relaxed in alternate realizations without altering the likelihood
structure.

In figure 6, the square search region appears on the left, with mine likelihood contours and
sample objects (mines and clutter) overlaid on it. The mine locations are represented by circles
and the clutter locations by plus signs. A segment of a random search path is also illustrated in
the figure. The end of the search path that contains a circle and box indicates the sensor location
at a current time. The box defines the region within the space used to construct a local sensor
referenced map of the following form:

L={x|xeG,xs—d, Sx<xg+d,ys—d, <y<ys+d,|. (85)
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Figure 6. Evaluation Grid Development

This local map centers at the current (time = t;) sensor coordinate reference xs(t;), as is illustrated
in the lower right portion of figure 6. Here, the uniform grid spacing and the square cell
construction of G becomes evident. Displacements d, and d, are selected to ensure that, for the
given update interval AT, all points covered by the sensor scan along this trajectory segment are
included in L. A linear transformation of coordinates in the local map at time t; of the form

(86)

X (1) =TO) [x —x(t)} T(O(t,)) = [Cose(ti) pours )}

sinO(t,) cosO(t,)

is applied to align coordinates with the vehicle orientation 0(t;). This is illustrated in the upper
right portion of figure 6. The circles are of radius Rp, which is indicative of the detection region
covered by the sensor. Also indicated is the change of coverage as the sensor advances from
time t; to ti;; along its prescribed search path. The apparent slither at the top of the circle is
defined as the evaluation region.
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Within the evaluation process, multiple maps are developed over these global geo-spatial
coordinates, including a mine density map, a clutter density map, and a geographically
referenced sensor detection map. Each of these maps associates probability mass to the grid
elements, and all of the maps conform to the same grid specification G. The mine density map
forms the cornerstone on which search effectiveness evaluation is conducted. As discussed in
section 2.3, the mine density map is decomposed into a probability density function scaled by the
expected number of mines. Globally referenced detection modeling is used to isolate
geographically referenced sensor performance dependencies and to maintain the bookkeeping
associated with multiple pass search paths. However, all probability calculations are made over
the local sensor referenced map (over grid L).

The search region size, grid resolution, and update interval can be specified directly or can
be derived as a function of three control variables—pa, Nmax, and Nugy. In the latter case, as
above, let Nyax specify the number of grid points in a half-length along the side of the search
region. Then, setting each grid point at the center of each identical grid cell of area Ax*Ay, the
size of search region S becomes ag = |S| = ANpmax *AX*Ay. Let pa specify the ratio of sensor
detection radius Rp to the distance advanced in a search update interval AT. Then, pa = Rp/Dagy
~ Rp/SsAT, where D,g, ~ SsAT for a search platform traveling at constant velocity (it is assumed
that the update interval AT is small enough for such an approximation to hold). Let N4y be a
numerical resolution parameter specifying the number of grid points in the search advance slither
in the direction of forward motion. Thus, the temporal update interval is given as AT =
[1/papp]’, where pp = Ss/Rp and the plus brackets imply rounding up to the nearest integer
value. Similarly, the grid spacing resolution in either Cartesian coordinate direction is calculated
as AX = Ay = [Dagv/ Nagy]” = [Rp / paNaav]~, where the minus brackets imply rounding down to
the nearest integer.

This grid specification highlights interdependence between resolution and the sequential
update interval determined as a function of the sensor characteristics (Rp), search rate (Ss and
AT), and the mine field characteristics (Ax, Ay, and ao) that are assumed. Otherwise, the size of
the search region may be specified and the resulting number of grid cells necessary to attain
accuracy determined. That is, either Nmax Or ag can be made the independent variable.

3.2 NUMERICAL CALCULATION OF SEARCH PROBABILITIES
Recall that the detection event decomposition described in section 2.1 requires that, for each

grid cell, a corresponding value for the probability of detection conditioned on arbitrary mine
placement within that cell be calculated as

LU Pr(d = d|x)fdx ) L Pr(d = d|x)dx

b~ L fdx - |Gk.l|

where |Gy| is the area of the grid cell, as given by equation (11). The form of equation (87)
assumes constant mine placement likelihood over the grid cell, and this assumption is maintained

(87)

: )
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henceforth. As noted, the resulting detection probability represents a spatially averaged value for
detection probability. When the detection likelihood within the grid cell is also approximately
constant (at value Pp), equation (87) simplifies to

‘Lk.l Pr(d =K ' Gk'l )dx pa PD‘Gk.l‘

” =P (88)
- ‘Gk.l| |Gk,||

D>

as expected. Thus, under an assumption of constant detection likelihood within the grid cell, the
grid cell conditional detection probability can be assimilated directly from a suitable sensor
performance prediction. Note that this expression does not depend explicitly on sensor position.
Rather, sensor proximity was implied in the designation of search regions and their
correspondence to scans. Digressing from this restrictive association, the paragraphs below
introduce the circular sensor evaluation region that is depicted in figure 6.

Let the sensor detection capability be characterized by the definite-range law (reference 3)
with a fixed and known detection radius. That is, if the target appears anywhere within a circle
of radius Rp centered at the sensor, the target will be detected by that sensor with probability Pp.
Consecutive circular regions are applied for each temporal update, and the set difference as the
circular region at time t;.; sweeps to that at time t; is determined. The set difference constitutes
what is referred to as the evaluation region, and it is developed assuming linear motion between
updates. Hence, its shape remains constant even as the search platform maneuvers about in
executing its search plan. From this region, a probability change AP is calculated for each time
interval and mapped to the event spaces under consideration.

A search path constitutes one contiguous swath centered on the vehicular trajectory
established by the platform search plan. The search region is segmented along the trajectory at
sampling interval AT = t; - t;;. This is illustrated in figure 7 for an arbitrary search path. For
non-intersecting paths, the segmented search path constitutes a collection of spatial subsets that
are both exclusive and exhaustive. This makes the collection well suited to set theoretic
probability calculations. Note that the segments need not relate directly to specific sensor scans.
All that is required is that values assigned to the geographically referenced Pp map be
representative of those obtained using anticipated sensors traveling along the search trajectory.
If need be, the Pp map can be developed more specifically as a function of source-receiver
geometry. For this case, proximity to the search trajectory along the segment must be
considered. Given a complete search path, the Pp map can be constructed over the entire
geographic space prior to evaluation. However, altering the path may require that the map be
updated as well.
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Figure 7. Example of Search Path Decomposition

For purposes of this report, the distribution of detection likelihood within the search path is
of concern only for the case of intersecting search paths or when the placement density varies
significantly within the search path segment. Otherwise, applying an averaged Pp to the path
yields the same probability calculation. That is, if mine density is approximately constant over a
region Gg, comprising Ng grid cells in the set R as in

G, = UGk.I > (89)
(k,HeR,
then
B w 1 p - J.GU Pr(d =d| G“)dx B J‘GRC Pr(d =d| GRC)dx o
D — z Dyy = Z — ) ( )
N e (kiyer, (k.)eR, Nr. Gk‘ll |GRc

The current realization requires the development of the global Pp map to facilitate comparison of
alternate search paths. However, this design requirement can be relaxed should detection
probability need recalculation on a more frequent basis. For such a case, the local Pp map would
be developed and applied within each update cycle in lieu of a global articulation prior to
evaluation.

For the cases of intersecting search paths and/or multiple search platforms, non-detection
probability must be maintained at a global scale to preserve search history. Specifically, a non-
detection P; map is constructed over the same grid G and initialized to unity prior to the start of

the search. Then, for each time that a grid cell Gy is covered by a search segment, the non-
detection map is updated at the cell index k,l according to the recursion

P5, =P (=P ) 1)

Dy
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for all the points in the evaluation region. Maintaining this quantity separately leaves the
detection Pp map unchanged. The multiple pass detection probability is thus provided by the
P, P5 product with initial value Pp.

The probability change AP, over a time interval AT, is calculated by aggregating the joint
probability for each point in the evaluation region. Let I;.; represent the set of indices covered by
the sensor and its evaluation region at time t;. The set I; is constructed to include all cell indices
covered by the union of the circular sensor coverage region at time t; and the tubular swath
connecting it to the previous sensor coverage region. Then, the set difference

I, ={(D|(kDel,(k)el,} (92)

provides the indices of all grid points that lie within the evaluation region developed at time t;.
In this scheme, fringe points may occur arbitrarily within any particular update. However, the
fringe points are aggregated only once per distinct search path, and so the integrity of the
calculation is preserved over paths of arbitrary length to within the fringe accuracy. The
probability change over the time interval follows as

AP.= ¥ B. (93)

[ 2 l
D Gy,
(k,Dyel kI k.l k.

The quantity Pg represents the probability density function provided in the prior knowledge
specification or extracted from the decomposition of the mine density function when the number

of mines is unknown. Hence, AP; represents the probability of detecting a mine within the
evaluation region conditioned on there being at least one mine within the search space S.

For the case of an unknown number of mines, the mine density function is given by
Ay = Ny, - P,, where N, denotes the expected number of mines in the search region S. A

value for N,, must be provided in the prior specification. Then, the expected number of mine
detections in the evaluation region becomes NMD. =N, - AP,, and the probability of not finding

any mines in the evaluation region becomes
AQg = exp[—ﬁM -APi] : (94)

The aggregate non-detection and detection probabilities over the partial search path, up to and
including segment i, become

QSS. = lj)A()SSJ = AQSS‘ QSS. 1
(95)
Pss| =1- st, 5
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respectively. Analogous quantities are developed for the case of the clutter density map
Ao = N - P, , where the value of N.—the expected number of clutter objects in S—is also
assumed to be provided in the prior knowledge specification.

For the case when Ny—the actual number of mines in S—is assumed known, and each
mine is assumed to be identically distributed with density function Pg, the probability calculation
takes the forms developed in section 2.1. In such a case, the clearance probability for finding all
Nwm mines in the partial search path is calculated as

Py :(iApjj - (96)

Similarly, the probability of finding at least one of the Ny mines along the partial search path is
calculated as

; Ny
Pl =1= [1 - ZAPj] , (97)
j=0

3.3 EXTENSIONS FOR MINE FIELD STRUCTURE

Any prior knowledge of mine field structure is integrated into this search evaluation
capability in the generation of either the underlying mine density map A, or its component
probability density Pg. The fundamental construct is the notion of a local mine field map Pwmr,
developed over a scale commensurate with the prior knowledge of field structure. This field map
can be employed in a variety of ways in calculating event probabilities. The exploitation of the
field maps is the subject of ongoing investigation. The following representations apply to the
restricted set of probability calculations whereby identical distribution in single mine placement
can be assumed.

The mine location density function A,, is constructed as a superposition of an unstructured

mine placement density and the density function associated with each candidate mine field
structure:

NMI-
Mo =N BB B> R (98)

i=

where it is recalled that N, denotes the expected total number of mines in the search region S.
Each component of Ay is similarly decomposed as

}\'R =ﬁR ‘Pogs }"MF :NMF 'P(;MF,.’ j:l""’NMF’ 99

] ]
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where N, is the expected number of randomly placed mines and ﬁw, is the expected number
of mines placed using mine field structure i. Note that NMF‘ may be more or less than the

number of mines necessary to totally populate the structure N, . This can happen when the

structure population is unknown or when multiple realizations of the field can be expected. For
some event criteria, the value may signify only the number of mine fields in the space S.

Substituting equations (99) into equation (98) and rearranging the terms allows the
probability density Pg to be formulated as a mixture density of the form

N\ﬂ'
PG=WR'PGR+ZWMF,'PGMF,’ (100)

=l

where mixture weights are calculated as W, =N, /N,, and W,,. =N, /N, . In this way, Pg

incorporates prior knowledge of mine field structure at a degree proportional to its anticipated
occurrence. The field structure is developed in the form of a conditional probability density
function as described in section 2.2. Specifically, a drop referenced mine field map with a
central drop reference point is constructed in local mine field coordinates. With application of
the drop independence assumption, this function is convolved with a drop preference map
developed in global coordinates to obtain the resulting mixture component Py, . A separate

drop referenced mine field map is constructed for each candidate structure. Drop preference
maps may be specific to mine field structure, depending on its composition and any constraints
imposed on mine types included. The grid resolution for the drop reference and drop preference
maps is identical to that of the global evaluation grid G. However, the size of the map is specific
to the structure. For illustration, a construction example is provided below.

Consider an example in which the parameterization of prior knowledge on field structure
consists of a single mine field type with a number of mine lines N; = 2. Each line consists of a
fixed number of mines with known spacing Dy between them. The spacing D; between mine
lines is assumed to be fixed and known. For this example, two random placement influences are
introduced. First, a Gaussian mine drop error of the form x. ~ N[0, I,6°] is applied for each mine
in the structure. In this example, the drop error variance o” is circularly symmetric, with ¢ =
0.13*Dm. The second random influence is introduced in an ancillary parameter that is
independent of the space S. Define the angle 0 to designate the orientation of the mine field
(assuming the rotation occurs about the reference point). Let Ig = [0y — AB/2, 6y + AB/2]
represent an angular interval AB about 6, from which the orientation angle 0 is drawn.
Nominally, all ancillary random variables must be marginalized out in the construction of the
mine field map. When available, statistical parameterizations of field structure are applied
directly in the marginalization process. Otherwise, maximum entropy methods (reference 12)
are applied to develop plausible mine locations. These entropic priors require a minimal amount
of modeling assumptions in their development. An example is illustrated in figure 8a. The
functional form used in developing the entropic drop referenced map shown in figure 8a is

fm(x):fMF(xlxref)*fref(xref)’ (101)
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where

£ (x| X ) =Kz '!max{exp[-— dp(x,xj;o) +(pd, (X,Xj;())) ]}} ' (102)

Jelyr 20'2

In equation (102), Ky is a normalization constant to ensure that equation (101) serves as a
proper probability density function. Iyr indicates the indices of mines within the structure and d,
and dy denote radial and angular distances of the form

dp(xl’XZ;xref)z pz_pl|’ (103)

dy(X,,X,;X,,A0) = max (max(6, — A8/2 —6,,0), max(0, + A6/2 - 0,,0)), (104)

where p, = \/(Xl —X )+ (¥, = Y.) and p, = \/(xz —X, ) +(y, =y, denote the
distances from the reference point (supplied as an ancillary parameter) to the points x;, X2, and

0, = tan '(y, — ¥, /X, — X,¢) and 0, =tan '(y, - y,;/X, — X,) denote the angles between x,,
x; and the coordinate axis. The radial distance of equation (103) measures the absolute
difference between the two calculated radials and the angular distance of equation (104)
measures the difference between the two calculated angles relative to the size of the interval A®.
The latter comprises an angular interval distance. Since the drop reference map is centered about
the reference point location, the reference location used in equations (103) and (104) is at the
coordinate origin of the mine field map, X.r = 0,.

a. Drop Reference Map b. Drop Preference Map c. Drop Referenced Prior

Figure 8. Drop Referenced Prior Development
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An example of a drop preference map is shown in figure 8b, and the composite drop
referenced prior is generated via a numerical convolution of the drop reference and drop
preference maps. The result is shown in figure 8c. Figure 9 illustrates the difference in scale
between the search space and the mine field drop reference map. The size of the mine field map
is indicated by the blue box in the figure. Overlaid are a replica of the drop referenced prior and
a sample instantiation of a mine field consistent with the assumptions on the prior. Background
clutter is depicted as the blue and red plus (+) symbols, with red indicating a mine-like
appearance. The black star (*) in figure 8b represents a numerically drawn sample from the drop
preference map. The sample mine field instantiation is centered at this location.

Figure 9. Example of Drop Referenced Prior

A distinct set of maps are generated when mines are known to be present in the search
environment a priori. This is so because of the extended mixture hypotheses required to form
the map as shown in equation (59). Figure 10 illustrates a sample set of the maps. The mine
location map of figure 10a represents the uncertainty in the identified mine location. This can be
merely a numerical evaluation of the drop error uncertainty or can incorporate additional factors
such as registration uncertainty due to navigational errors. In the current realization, the scale of
this map is set to that of the global coordinate grid G. In practice, this function has small support
over S and, therefore, requires a grid that is a fraction of its current size. The global scale does
accommodate multiple identified mines within the current processing methodology, provided
that they do not originate from the same field structure. The plausible location map in figure 10b
indicates where mines might be found given an identified mine location. This is a local mine
field map centered on the identified mine coordinates. The current realization of this map
applies only to the case of a single identified mine. Multiple mine identifications that may have
originated from the same field structure require a fusion process to develop a posterior location
map that is representative of the multiple observations. The map developed considers each mine
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drop location represented in the mine field structure as the possible position of the identified
mine. Then, for each of these points, the likelihood of other mine locations within the mine field
map is evaluated and aggregated.

For purposes of illustration, the example for figure 10b utilizes an entropic parameterization
in the map formation in a manner similar to the drop reference prior example, such that

£,(x)= (x| xp) 2 fp (X pp) 5 (105)
and
d2(x,X;5%,) + (pdg(X,X 3 X,))’
fMF(x | X|D) = Kid E max {exp[_ B : p2 - d ’ (106)
Jelp.J# 20

where K;q denotes the normalization factor. Radial and angular distance metrics are developed
as in equations (103) and (104). However, the reference location x,.r now becomes the mean
location for the hypothesized identified mine component; that is, X,. The convolution of the
mine location and plausible location maps is provided in the field structure prior illustrated in
figure 10c.

e
\X

a. Mine Location Map b. Plausible Location Map c. Field Structure Prior

Figure 10. Identified Mine Prior Development

The larger scale associated with the field structure prior is illustrated in figure 11. The
global search space S is shown on the right and a blow-up of the field structure prior is shown on
the left. The identified mine location was set to the first instantiated mine of a sample mine field
drawn from the drop reference prior of the previous example. The sample mine field is
discernible in the blow-up. Observe the apparent lack of likelihood at the identified mine
position. This illustrates the point that the mine field structure is modeled to preclude mine
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placements in close proximity to each other. It is also a consequence of the spacing included in
the prior specification. Note in equation (100) that the contribution of each mine field map is
weighted and aggregated. This is the case for the field structure prior as well. Hence, if the

expected number of mines ﬁMFm is on the order of the other priors, the field structure prior can

dominate the resulting mine density map, as occurs in figure 11. The example depicts the prior
considering only one mine field type. Multiple types can be aggregated accordingly. However,
the reference for any composite mine field structure remains at the identified mine location. The
determination of suitable weighting between identified mines and anticipated mine field structure
is part of the prior knowledge specification.
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3.4 PROCESSING DIAGRAMS

The following diagrams detail the sequence of processing steps in the computational
implementation of the search evaluation capability. Figure 12 depicts the sequential evaluation
loop that is realized in the algorithm. As indicated, results are provided as a function of time
along the search path, and summary statistics are generated at the end of a run. The two essential
processing components are the initialization block and the processing cycle conducted for each
sequential update.

Termination
Criteria Met

D

Summary
Results

Initialization Update
Block Cycle
Path Specific
Results

Figure 12. Sequential Evaluation Loop for Search Evaluation

In figure 13, the process initialization block is described in more detail. In particular, all
prior knowledge of field structure and placement is applied in this block. The result of this prior
knowledge is contained in the form of the mine and clutter density maps. The global
representation of sensor performance is developed here as well. Furthermore, a search trajectory
characterization process is provided within this block to synthesize search plans for basic
motions. This component employs the goal-oriented curvilinear motion (GOCM) model that is
described in appendix C. In practice, most search plans are provided as direct input to the
evaluation program and, in such cases, this block reads that search plan into memory.

Figure 14 presents a detailed description of the update cycle itself. Here, the search path
kinematic trajectory and the various evaluation maps are provided as input and operated upon.
The diagram illustrates the simplicity of the modeling construct. Any processing component
from which there are no outgoing flow lines indicates the availability of path-specific results.
The branching of processing components illustrates opportunities for calculations to be
performed in parallel. Following completion of the evaluation, summary results are produced by
either extracting the path-specific results at the terminating conditions, or by operating on them
in some ancillary fashion.
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4. ALGORITHM PERFORMANCE

This section presents results that serve to validate the search evaluation methods described
in this report in terms of accuracy and utility. To the degree practical, the numerical results of
the evaluation method are compared against theoretical and experimental results. The intent is to
demonstrate the achieved performance for alternate grid resolutions under conditions of varying
complexity.

4.1 COMPARISON AGAINST A BASELINE Pss

The first level of validation under consideration is a comparison of calculated values for the
probability of successful search Psg against theoretical values. To do this, a “mow the lawn”
type of search pattern is used where the search trajectory is set to lie entirely within the search
region. In this example the search speed of the platform is set constant and the turn rate

C=S/R,, is constrained to achieve constant area coverage per unit time, as discussed in

appendix C. For the condition of uniformly random mine placements over the search space S,
this affords a direct comparison of the search path results against an equivalent long, single-leg
search path. The predicted Pss yields (as a function of time) the probability of finding the next
occurrence of a mine within the executed portion of the search path. It has the functional form of
the Koopman’s random search law (reference 3)

Pes(t) = 1-exp[- N, Pyo(t)] , (107)
where NyPp represents the expected number of detected mines in the search space and

nR} + 2R S(t—t,)

o(t) = (108)

a,

defines the area swept out by the searcher over time t relative to the size of the search space. As
the actual number of mines is unknown, NyPpd(t) yields (as a function of time) the expected
number of mines detected in the executed portion of the search path.

Figure 15 shows the sample search region used for the validation. A search speed of 10
knots is used with a search time of 8 hours and 14 minutes. Other scenario parameters include
an update rate of 9 seconds, a sensor detection radius Rp = 300, and Pp = 0.95, yielding an
advance ratio of p = 6. Using a value of Ny = 2, a square search region of 10,000 yards per
side is selected to produce a search plan that is not dominated by straight search legs. For this
experiment, a fixed resolution is used in lieu of the aforementioned scaling parameterization.
Four separate numerical evaluations were run, using spatial grid resolutions of Ax = {100, 50,
25, 12.5}, with Ay = Ax for each evaluation. The consequence on grid cell density within the
sensor detection region and within the evaluation region is illustrated in figure 16. The total
number of grid points required, that is Ny = (2Nmax)2, is affected accordingly for each case.
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The resulting values for probability of successful search Pss from the computational
experiment are shown in figure 17. All four grid resolutions are depicted, although similarity of
results makes it difficult to discern them in the figure. The red dots denote the calculated values
of Pss and are presented at a sampling of every 50 time updates. They are superimposed over the
blue line depicting the theoretical value of Pss using equation (107). The curve realizes
Koopman’s random search law as described in section 2.3 for the case where the expected
number of mines in the search space, E{Ny} = 2, is known. The black and blue dots correspond
to the case where the actual number of mines, Ny = 2, is known. The black correspond to the
probability of finding both mines, while the blue correspond to finding either of them.
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Figure 17. Probability Calculation Results

Figure 18 shows the difference error between the Pss calculation and the theoretical values.
All the error curves show the effect of the non-linear mapping from area coverage to probability.
The impact of the platform turns in executing the search plan is least discernible (i.e., has lowest
error) at the highest resolution (case A) and becomes more pronounced as resolution degrades.
At the lower resolutions, the impact of grid cell alignment relative to the search plan is evident as
another source of error. In the lowest resolution (case D) where the update evaluation region is
smaller than the grid point separation, there is “jumpiness” in the prediction. Such sizing
conditions do not present a theoretical shortfall, however, as the probability calculations are
essentially set functions and it is the accuracy of the aggregated evaluation regions that drive the
prediction accuracy. Each of these phenomena should be anticipated in selecting grid size and
scale during a search path evaluation.
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Figure 18. Pss Error Over the Search Path

The numerical accuracy of the four cases is summarized in table 1. Here, the “Maximum
Error” refers to the maximum difference error evaluated for Pss over the search path for the
given grid resolution. The “Coverage Bound” is an approximate bound reflecting a worst-case
condition that is provided for comparison. This bound is based on the unusual properties of this
test case. Specifically, with turn rate C = S/R,, and an aggregated turn angle of zero, the search
trajectory path length is identical to that of the two coverage bounds on either side of the
trajectory and that of an equivalent straight-line path had no turns been made. To show this,
observe that the trajectory path length over the turn segment is

p= 0 Ry = CAT, « By = BAT,. (109)

As the outer coverage boundary realizes an arc of radius 2Rp, the outer boundary path length
during the turn is twice that of the search platform trajectory, while the inner path length is zero.
Hence, over a sequence of turn and counterturn, all path lengths become equal. As the grid
realizes cell boundaries that consist of parallel lines in the x and y direction, for any linear
segment of the search path the maximum number of grid cell interactions for a search boundary
line is limited by N, = SAT/R,. For curvilinear motion where the grid resolution is much

smaller than the radius of curvature of the turn, the crossing of the boundary path across
individual grid cells is approximately linear and Ng applies as an approximate limiting condition.
Additionally, for each grid cell interaction at the boundary, the maximum error in the coverage
calculation due to lateral grid overlap is on the order of one-half of the cell density value, with
equivalent sized errors distributed equally on either side of the path boundary. Hence, the

< N.Ax?/a, becomes a limiting condition on the aggregated set size
G 0 g 28reg

error. The mapping to the Pss error as used in the Coverage Bound is thus
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[Pys. (D] =[1 = exp(—= Ny Pod(t)) - [ - exp(— Ny Py (4(t) + 6, (1)))]
= |exp(= Ny Poo(t) fexp(— Ny, Pod, (1) - 1] (110)
< exp(Ny Py, (D))~ 1.

: ]

In table 1, the error bound is significantly larger than each of the observed maximum errors.
The bound is meant to serve as a worst-case indicator representative of the situation where the
search trajectory lines up in the worst possible arrangement relative to the underlying grid. More
typically, averaging effects lead to calculation errors accumulated over the search trajectory that
are much smaller.

Table 1. Pss Baseline Comparison Results

Case A Case B Case C Case D
Multiplier 1 2 3 4
Ax / Grid Size 12.5 /640000 25 /160000 50 /40000 100 / 10000
Maximum Error 0.000043 0.000193 0.000712 0.001638
Coverage Bound 0.017703 0.035406 0.070812 0.141623

4.2 VALIDATION VIA SIMULATION EXPERIMENTS

This section presents a limited set of simulation results to authenticate the probability
predictions established for the various search events described in the preceding sections.
Validation is achieved over a Monte Carlo ensemble of repeated trials when the observed
frequency of occurrence approaches the predicted probability as the number of samples in the
experiment becomes large. These experiments are intended to be informative as well, and they
serve to demonstrate how search event probabilities must be interpreted in applying the various
criteria.

For all the simulation experiments, a grid specification of {Nmax =400, Nagy = 3, pa =4} 1s
applied, yielding a search box of 20000 yards per side and a grid of 640 thousand cells, with a
resolution of 25 yards. The first experiment involves a simple “mow the lawn” search plan as
above, except that the search platform broaches the search region boundary before turning to the
next leg. This enables a comprehensive search of the region, as illustrated in figure 19. A
uniform mine density function with the expected number of mines in the search region of Ny = 4
is applied, with a constant detection probability of Pp = 0.8 and a detection radius of Rp = 300
yards. The numerically computed probability assessments are shown in figure 20 for a search
path extending to three sweeps of the area.
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Figure 19. Search Path for the Uniform Drop Experiment
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Figure 20. Search Probabilities for the Un
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First, observe in figure 20 that as coverage is applied outside the designated search area
where placement likelihood is zero, search effectiveness is delayed and the calculated Pss lies
below the theoretical value conditioned on continuous coverage. Observe also that the next
detection probability for the case of a known number of mines in the search region lies above the
Pss curve. This precise knowledge of the tactical situation reduces uncertainty and that is
reflected in the prediction. The remaining three curves relate to area clearance probability.
Observe that the spatial average clearance probability lies consistently above the probability of
the known number of mines being detected. Similarly, the minimum cell clearance probability is
also shown.

The first Monte Carlo experiment focuses on next detection probability and its dependency
on prior knowledge of the number of mines Ny. A uniform distribution over S is applied. For
the known number of mines condition, precisely four mines are placed in each experimental
realization. For the unknown number case, an expected value of four mines is used and a
Poisson distributed number is drawn to determine the actual number of mines to place at random
for each realization. Mine locations are tagged to grid cells and, if a mine is encountered during
the sequential search evaluation, a uniform random number is drawn and tested against a
threshold of detection probability Pp to determine if detection occurs. The number of mines
detected over the search path is recorded and a test statistic is set to 1 if a detection occurred and
to 0 otherwise. A partial search path is examined for this experiment with results generated
when the predicted Pss attains a value of 0.8. This yields a first detection probability of 0.8725
for the case of known Ny and provides a context where the predictions are distinct. Figure 21
presents the ensemble average of this test statistic as a function of the number of ensemble
realizations (note that the horizontal axis of figure 21 is logarithmic). Observe that as the
number of realizations approaches 1000, the observed frequencies of occurrence converge to
their predicted values, such that a separation between outcomes is readily apparent.
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Figure 21. Partial Search Path Mine Detection Results

Next, consider a clearance search path comprising an entire sweep of the search region. For
this Monte Carlo experiment, two clearance events are considered. Given precise knowledge of
the number of mines Ny, the predicted probability of detecting all of them is compared to the
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observed frequency of occurrence. To do this, the number of mines that are detected over the
search path is recorded. The test statistic is set to 1 if this number equals the known value and to
0 otherwise. Results are plotted in figure 22. The other clearance event involves the search
effort assessment given no knowledge of mine placement within the search region. Specifically,
the frequency of occurrence of the event that a mine exists in the cell and is not detected is
recorded for each grid cell. Hence, both placement and detection events require recording, with
the cell-specific event occurrence given by the ratio of placement to detection events. For this
experiment, it is necessary that the test statistic not be dependent on the actual number of
occurrences. Otherwise, it would depend on the number of realizations and not be a valid
context for the experiment. The cell-specific occurrences are averaged over the grid and the
results plotted in figure 22.
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Figure 22. Clearance Event Frequency of Occurrence

The convergence of the observed experimental frequencies of occurrence to their predicted
probabilities is apparent in figure 22. The achieved tolerances exhibited in figures 21 and 22
remain to be articulated, however. What is important to observe is the difference in the
performance assessments themselves. The search effort evaluation presented in the cell average
probability corresponds to a blind search where it is unclear what the actual context is and,
hence, precisely what it is that you are looking for. As this measure is developed over the
probability density function extracted from the mine density A-decomposition, a single mine
context applies. Thus, the result provides a probability that if a single mine were present in the
region, it would be detected. For this case where detection probability Pp and mine density A are
constant over the region, it becomes equivalent to the sensor characterization independent of
geography. Note that this will not generally be the case. The probability of detecting all mines
in a search region presents a more stringent criterion to meet—it is contingent on having that
precise knowledge in forming the evaluation metric. For this case, the search is presumably
highly directed and search effort applied until all mines have been detected to within a specified
probability. For the single area sweep presented in figure 22, the predicted probability of finding
four mines is 0.4096. This contrasts with a search effort threshold of 0.8 that was applied. In
comparison, a Psg next detection probability calculation using an expected number of mines of
Ny = 1 yields a predicted value of 0.5507.
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The remaining experiments are conducted using non-uniform mine and clutter densities. In
addition, a field structure is applied in developing the mine density function. For these
experiments, the mine field consists of a single line with 12 possible mine locations along the
line. The expected number of mines populating the field is set to four. A random mine
placement is also applied with an expected number of two, yielding a total expected number of
six mines placed in the search region. These numbers are kept artificially low so as to extend the
partial search path before a Psg threshold criterion of 0.8 is met, as the intent is to demonstrate
the properties of the search evaluation capability. The partial search path where this condition is
met is depicted in figure 23. Also shown are contours corresponding to the respective mine and
clutter density functions.

To emulate mine classification degradation in the presence of clutter, an artificial reduction
in detection probability in the form of

Py (x)=0.8=0.2-Ac(X)/Acpm (111)

is introduced to yield an unweighted average Pp of 0.764 over the space and a density weighted
average of 0.732. The combination of spatial variability and mine field structure results in the
predicted probabilities shown in figure 24. The impact of spatial variability on the next detection
probabilities relative to that of the baseline Pgs (recall that the baseline is conditioned on a
uniform distribution) is readily apparent for this partial search path. The separation between the
next detection probabilities assuming a known or unknown number of mines is less apparent than
in figure 20. This is due to the increase in the expected number of total mines in the search
space. In general, the next detection probability curves for a known and unknown number of
mines converge as the expected number of mines Ny increases.

Figure 23. Structured Drop Experiment Mine and Clutter Densities
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Figure 24. Structured Drop Experiment Predicted Probabilities

the false alarm probability reaches a value of 0.8.
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Figure 25 illustrates the results of a simulation conducted to demonstrate anticipated mine
detections versus detections due to false alarm clutter. The clutter density spatial Poisson
process is colored by a value of Pc = 0.85, denoting the probability of classifying the clutter
properly. The unclassified clutter forms an independent spatial Poisson process, and the
detection of these mine-like objects constitutes a false alarm. Figure 25 plots the ensemble
average of the number of detections occurring along a partial search path that is terminated when
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Figure 25. Detection and False Alarm Frequency of Occurrence




The expected values of the number of mine detections and false alarms encountered along
the search path provide additional criteria in comparing search paths under geometrically varying
conditions. Figure 26 shows the evolution of the expectations as the search path is executed.

The end-case ensemble of 2000 simulation runs was used in constructing this figure. For this
depiction, one complete sweep of the search region is executed. The figure shows the calculated
expected values, the average of the number of observed detections that occur for each time step,
and a set of bounds corresponding to the standard deviation of the ensemble. For this example,
the results demonstrate the dependency on spatial variability and the richness of the false alarm
density relative to that of the mine density.
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Figure 26. Expected Number of Detections and False Alarms
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5. SUMMARY AND FUTURE WORK

This report has detailed the development of a search path evaluation capability for objects
that may be placed with spatial structure, such as occurs in mine-hunting applications. The
method is based on a rigorous extension of previous work on distributed search theory, whereby
searcher motion is combined with spatial patterns of the objects of search. This probabilistic
view of the spatio-temporal search process is consistent with uncertainty representations that are
characteristic of information provided for the assessment of realistic mine-hunting operations.
The method is appropriate for objects occurring randomly or in spatial patterns, for a known or
unknown number of objects, and with or without clutter contacts. Furthermore, the method
works with search paths of arbitrary complexity, including search paths that self-intersect.

[n the process of developing this capability, a significant degree of mathematical rigor was
applied to create the event spaces over which probabilistic calculations are based. As a
consequence, several maps were developed either on the global search region scale or on the
local sensor referenced subspace. These include the respective mine and clutter density maps,
the detection and non-detection probability maps, and the respective mine field maps associated
with a reference placement of an identified mine. These maps are a byproduct of the search
evaluation procedure; yet, they may prove to be useful as additional information to an operator.
The cases of prior knowledge on the number of mines in the search environment or its expected
value were considered. When mine field structure is assumed, the actual or expected value of the
number of mine fields is applied as well. A variety of performance results were developed and
presented to clarify the capability in terms of its functionality, efficacy, and accuracy.

The numerical procedure for search evaluation employs a grid-based realization so as to
readily incorporate environmental influences on mine placement and the spatial characterization
of clutter. Additionally, the capability integrates a degree of prior knowledge on mine field
structure into the evaluation methodology. This modeled structure is incorporated into
calculation of the probability of finding the next mine for the cases of no identified mines or a
spatially diverse set of known identifications. The method is based on a notion of search effort
swept over time, so it is directly applicable to any sensing modality that can be represented as a
probability over range in directions relative to searcher motion. This search evaluation capability
does not address the fusion of prior knowledge of mine field structure with the location of
multiple identified mines within mine field proximity to each other. It can incorporate such
output from algorithms that do perform fusion on multiple observations if it is provided in the
prior knowledge specification.

While the method is appropriate for robust computation of problems of current interest,
there are a number of extensions that can improve the capability. The tessellation of the search
space (to represent underlying mine and clutter density functions) was limited to square grids for
ease of development. There are many alternate tessellations, both uniform (such as hexagons)
and non-uniform (such as different sized rectangles), that may prove to be computationally
advantageous. As the problem scale increases, this is an area that may merit consideration.
Another computational complexity issue is to determine the appropriate tradeoffs between
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effectiveness of computation and speed of computation, which can be computed as a function of
grid evaluation parameters using available Pareto optimization techniques (reference 13).

With respect to the search path input, the method currently assumes a perfectly known
search path, with uniformly sampled time intervals. Obviously, time sampling can be applied to
any given path to meet the uniform sampling intervals, but that may also prove to be
computationally inefficient, especially for search paths that have extended periods of non-
maneuvering. Finally, the search paths are assumed to be known precisely; assessment of search
effectiveness under the anticipated uncertainty in navigational accuracy of the search platform 1s
of critical importance. Since the search effectiveness is based on probability representations of
searcher performance, the effects of positional uncertainty of the searcher are regularly
incorporated into the method; this is a subject of current investigation.

Future extensions of this search evaluation capability include the development of additional
probability metrics for search evaluation beyond probability of successful search. Of primary
importance in the mine-hunting application is the representation of the probability of obtaining
queue roots that provide a mine-free (within some pre-determined certainty) path of given width
but arbitrary shape between two points. A direct extension of this method is to multiple
searchers, as the maps that underlie the search computations can be updated simultaneously for
any number of collaborating searchers. The impact of data fusion between such searchers is also
a simple extension, given a known description of the impact of the fusion process on the
corresponding Pp, values.

The initial uses of this search evaluation capability include the determination of
effectiveness inside of various path optimization strategies. Such applications will take
advantage of the robust computational nature of the approach. The evaluation of various
competing fusion strategies for multiple searcher mine hunting is another initial area of use.
Other intended uses include the development of new displays that represent regularly updated
mine location likelihood maps as search progresses. Within the operational community, the
search evaluation capability can be used to determine the impact on search evaluation obtained
by providing more (or less) information about the expected mine field characteristics. All of
these applications are under consideration.

54



[

10.

11.

12.

13.

6. REFERENCES

. T. A. Wettergren, “Statistical Analysis of Detection Performance for Large Distributed

Sensor Systems,” NUWC-NPT Technical Report 11,436, Naval Undersea Warfare Center
Division, Newport, RI, June 2003.

T. A. Wettergren, “Performance of Search Via Track-Before-Detect for Distributed Sensor
Networks,” to appear in I[EEE Transactions on Aerospace and Electronic Systems.

B. G. Koopman, Search and Screening: General Principles and Historical Applications,
Pergamon Press, New York, 1980.

A. R. Washburn, Search and Detection, 4th Edition, INFORMS, Linthicum, MD, 2002.
L. D. Stone, Theory of Optimal Search, 2nd Edition, ORSA Books, Arlington, VA, 1989.
K. lida, Studies on the Optimal Search Plan, Springer-Verlag, Berlin, 1992.

D. Grace, “Brownian Reber Search Theory for the Advanced Unmanned Search System
(AUSS), NCCOSC Technical Report 1534, Naval Command, Control, and Ocean
Surveillance Center, San Diego, CA, October 1992.

G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes, Oxford University
Press, New York, 2001.

A. Papoulis, Probability, Random Variables, and Stochastic Processes, Third Edition,
McGraw-Hill, Boston, 1991.

J. F. C. Kingman, Poisson Processes, Oxford University Press, New York, 1995.

L. D. Stone, J. A. Stanshine, and C. A. Persinger, “Optimal Search in the Presence of
Poisson-Distributed False Targets,” SIAM Journal on Applied Mathematics, vol. 23, no. 1,
1972, pp. 6-27.

A. Caticha and R. Preuss, “Maximum Entropy and Bayesian Data Analysis: Entropic Prior
Distributions,” Physical Review E, vol. 70, 046127 (2004).

T. A. Wettergren, “The Genetic-Algorithm-Based Normal Boundary Intersection (GANBI)
Method: An Efficient Approach to Pareto Multiobjective Optimization for Engineering
Design,” NUWC-NPT Technical Report 11,741, Naval Undersea Warfare Center Division,
Newport, RI, May 2006.

55



14. R. Durrett, Probability: Theory and Examples, Brooks/Cole-Thomson Learning, Belmont,
CA, 2005.

15. W. L. Brogan, Modern Control Theory, Second Edition, Prentice-Hall, Englewood Cliffs,
NJ, 1985.

56



APPENDIX A
PROBABILITY BACKGROUND

A.1 REVIEW OF PROBABILITY SPACES

A probability space represented by the triple (2, #, P) comprises a totally finite measure
space, with P denoting a probability measure (references 8 and 14). Here, Q denotes the set of
possibilities under consideration, F denotes an event space consisting of a collection of selected
subsets of Q, and the probability measure P:  — [0, 1] realizes a set function mapping events
E € % to numbers denoting the likelihood of event occurrence. The set Q is often described as

the set of possible outcomes of some experiment where ) is exclusive and exhaustive; that is,
outcomes can consist of only one member of the set and no other outcomes of the experiment are
possible. In contrast, events often consist of a set of outcomes and the event space may, or may
not, include individual outcomes as singleton events.

For & to be a valid event space, ¥ must comprise a c-algebra and every element of  must
be P-measurable. For any collection < P(Q), where $(Q) represents the power set of all
possible subsets of 2, # is a o-algebra if and only if:

1 ¢e &

(1) IfE € &, then~E € &.

(111) For any countable sequence (EJ; of elements of &,

CJEi €F.
i=1

In the above, ~E denotes the set complement of E with respect to Q, and ¢ is the empty set. As ¢
must be in the event space, so must be its complement Q. Also, from (ii) and (iii), all countable
intersections of events must be in the event space. If  is a valid o—algebra, then (€2, #) is a
measurable space. For P to be a valid measure on (€2, &), the following must hold:

(i) P(¢)=0.

(i) P(E)y>0forallEc &.
(111) For any countable sequence (Ei >: of elements of F where the E; are disjoint,

P(QEi)=ZP(Ei).

If these conditions are met, the triple (€2, &, P) is called a measure space. The measure space
becomes a probability space when P (Q2) = 1, with P being a probability measure.



Observe that the smallest possible event space (i.e., o—algebra) consists of the set {¢, 2}.
However, this c—algebra is non-informative and no probability questions regarding a particular
subset of Q can be asked. What is important for purposes of search path evaluation is that event
spaces are constructed that are specific to the set of probability questions to be answered. That
is, given a probability question (e.g., the probability of finding a mine along a given search path
within a specific interval of time), an event space & is constructed that yields the smallest
c—algebra necessary to answer the question.

A.2 REVIEW OF SPATIAL POISSON PROCESSES

The spatial Poisson process is a multi-dimensional extension of the set of arrival times
associated with a one-dimensional Poisson process. For our purposes, the arrival characteristic
concerns the placement of objects in a two-dimensional space. Objects persist in the space, so
the experimental outcome occurs only once. However, given any arbitrary region A S, the
number of objects occurring in that region of the search space N(A) becomes a Poisson
distributed random variable. The details of this process are given below.

Let A be a collection of Lebesgue measurable* regions {A} s < o within the search space S.
Then, {N(A)} 4 < A is a homogeneous spatial Poisson point process with constant intensity A if:

(i) Foreach A € A, N(A) ~ Poisson(A|A).

(ii) For every finite collection {A|, A,,..., Ay} of disjoint subsets of S,
N(A)), N(A»),..., N(A,) are independent random variables.

There are alternate axiomatic conditions that the spatial Poisson process satisfies. These are:

(i) IfA, As, ..., A, are disjoint regions, then N(A;), N(A»), ..., N(A,) are independent
random variables and

N[QAJzZN(Ai).

(i1) The probability distribution of N(A) depends on set A only through its size |A|.

(ii1) There is zero probability of points overlapping:
Pr(N(A) > 1)
i ——————— =
A-o0 Pr(N(A)=1)

Then, for any spatial region A c S, the probability of finding k objects within A for
k=0,1,2,...,is

*Any countable union of intervals in P, or rectangles in P?, is Lebesgue measurable.
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MA)*
Pr(N(A) =k)= (—|k'|)—exp(— AA]).

Next, the requirement of using a Lebesgue measure on P? is relaxed and variability of the
intensity parameter A over the search space S is allowed. Let

A(A) = Lx(x)dx

for all Lebesgue measurable A < S. Denote the set function A(A) as the mean measure of A and
variable A as a characterization of a non-homogeneous spatial Poisson process.*

The axiomatic requirements for such a process become:
(1) Foreach A € A, N(A) ~ Poisson(A(A)).

(i1) For every finite collection {A, A,,..., Ay} of disjoint subsets of S,
N(A)), N(A,),..., N(A,) are independent random variables.

Two important theorems regarding spatial Poisson processes of particular relevance to
search path evaluation are stated here in terse form and without proof. Readers can refer to
reference 8 for a more complete coverage of the topics.

Superposition Theorem: Let I1, and I, be independent spatial Poisson processes with
intensity functions A, and A,. Then, the set I1 = IT; N I1; is a spatial Poisson process with
intensity function A = A; + A,.

Coloring Theorem: Let I1 be a non-homogeneous spatial Poisson process with intensity
function A(x). Let each point of Il be “colored” independently as green at x with probability y(x)
and red with probability p(x) = 1 —y(x). Let I" and P be the set of points that are colored green
and red. Then, I' and P are independent spatial Poisson processes with respective intensity
functions y(x)A(x) and p(x)A(X).

These properties and theorems allow the construction of mine density functions and sensory
characterizations that vary over the search space. To show this, let A(x) be a mine density
function (i.e., intensity) associated with a spatial Poisson process I'1. Then, for each point of I,
let I'Tp be the occurrences colored by the detection event, with probability Pp(x), and let I'q be
the occurrences colored by non-detection, with probability Qp(x) = 1 — Pp(x). Then, from the
above theorems, I1p and I constitute independent spatial Poisson processes with respective
density functions Pp(x)A(x) and (1 — Pp(x))A(x).

*Note that when X is constant, A(A) = AAdx =L [adx =A[A|.
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APPENDIX B
JOINT DENSITY DEVELOPMENT FOR GAUSSIAN FIELDS

This appendix provides the development for the joint probability density function discussed
in section 2.2 for the case of a field structure comprising Gaussian components. Each structure
component is modeled as a normally distributed random variable x;, j = 1, ..., Nyu placed about
the common reference point X in the search space S ¢ R’ Let % | = X, +AX; designate the

ref

intended position of object m; with displacement Ax; from the reference. Let each reference

conditional placement be distributed as x; ~ N[x j,lch,] and assume that tail probability outside

S is negligible. As shown in equation (49), the joint conditional density takes the form

f(xl,...,XNMl Xpep) = ﬁ:fj(xj | Xreg s
p
(B-1)
=[2nof,IN“ exp[—ﬁ%‘((xj—ij)z +(yj—9j)2):|'
p

2
ref

Let the field placement density also be Gaussian, X, ~ N[X,,1,0,,]. Then, the unconditional

joint density can be developed via marginalization as in equation (41). This development is
tedious, however, and it is more insightful to map the conditional density into a form where the
unconditional joint density is readily recognized, as in

F(X 5o Xy o X ) = E (X e | Xpseees Xy ) - £(Xsen Xy ) - (B-2)

Here, f( X, [X,,...,Xy ) represents the posterior probability density function of where the
reference point may be located given the field placement prior and independent observations of
the Ny distinct objects in the structure. The notation z; = x; — AX; = X + n; is used to denote

observations on reference location, with n - N[0,Ich,] as above. Let

+[nl,n2,...,nNM]T (B-3)

ref

.
Z=[z,,z2,...,zNM] =A-x

denote the vector of such observations with A =[1,,1,,...,1, ]" and covariance matrix

R, = ci -L,y,, - Then, the reference conditional and prior densities take the form

1

f(xl e Xy | xref) = ﬁexp(—%[z - Axref ]TR;I [Z = Axref ]j > (B-4)
[or;

1 1
f(xref) = z_lexp(_E[XO - xref]T R(‘)l [XO - xrcf ]j ’ (B'S)

ref



2

where R, = o, - I,. The joint density, including field and object placement, becomes

f(x,,...,xN“,xref) =

[Znof,]N“ 2o,
Let L denote the exponent of equation (B-6) without the scalar term, -1/2. Then,

L = [Z = Axref]T R;l [Z = Axref]+ [x() = xref ]r R(‘)I [x() - xrcf ]
=x[R;' + AR} AJx,, 257, [Ry'x, + ATR}'Z]+ Z'R;'Z + IR} 'x,.

With p, = 6,/c.fand following the standard development in reference 15, the notation

P, =R, +A'R}'A,

2 2 2

1 I +NZM 1l _NMcref+cpl _NM+ppl

=2 2 s 272 2 2 27 2 2?
cSref = Gp Grefo-p Gp

%, =[R;' + ATR;A]'[R;'x, + ATR;'Z],
(e) Ny : N Ny
T | Lz"oJFZLzZJ =P iRy g 2[ 1 Z(XJ_Axi)}
Ny +p; | Oy 10, Ny + 95, Ny +p, | Ny =

ref

=2 S

+

is used to denote the respective information matrix and conditional mean of the reference
posterior density f(x, |X,,...,xy ). Completing the square in equation (B-7) yields

L=x"P x  —2x P %  +Z"R;'Z+x;R;'x,,

ref ™ xi/z “ref ref== x:/z""ref

- A -1 A T -I T -! AT -1 a2
_[xrcf_xret‘IrPx/z[xref_xref]+Z Rz Z+x0R0 XO_x P X

ref " x 'z el
That part of L that does not correspond to the reference point posterior becomes

T -Il Ty -I AT p-1 2
Lz. =7 Rz Z+ XORO x0 = xrefo’zxref’

-Z'R'Z+x'R;'x, - [R'x, + ATR;'Z] P [R;'x, + ATR;'Z}
TR B AR |G =BT ROAT, sy i R =T G 5

To complete the square in Z, let

P,'=R,'-R,'AP_, A'R;,

Z

2 .3 )
_ 1 1 cyrefo-p 1 T 1 O et T
S e e e T e
c o, Nyt +0, o, c, it + 5,

1 o 1 B
exp(— E[Z - Axm-]TRZI [Z = AXref]— 5["0 = xref]TR()l[x() ~ Xper ]j

(B-6)

(B-7)

(B-8)

(B-9)

(B-10)

(B-11)

(B-12)



denote the information matrix of the marginalized density. Covariance matrix P, is readily
obtained by applying the matrix inversion lemma to equation (B-12) and simplifying terms.
Doing so, one obtains

P,=R,+A[P, ~A™R]'A]'AT=R, + AR A", T
=070y, +OnAAT,
Using this form, the marginalized density mean value simplifies accordingly to
| -1 Tp-1 H|p - -1
- [R; -R;'AP,,AR;'[[R;'AP,,R;'x, ],
=l + GMAAT];——N i (B-14)
P, 1
= P A+ ~AA'A [x, = Ax,,
Ny +p, Ny pp
where the substitution ATA = NI, has been used. Completing the square yields
L, =[z-2] P2 [z-2)+x7[R; -R;'P, Ry |5, - 270;'Z. (B-15)

Rearranging equation (B-8) and substituting A'R,'A=P_ —R,',

ol G ol O
—xO[R"—AR A-R;'P, R;' +ATR;'AP, AR A]x,,

x/z
=x![R;' ~A'R;'A-R;'P, R;' + [P, —R“‘]PX/ZATR;' Alx,.
-x![R;'-R;'P,R;' -R;'P,, ,A'R;' Alx,, (B-16)
-x'[R;' -R;'P,,,[R;' + ATR;' A]x,.
-x![R;' - R;']x,,
=,

Hence,
= [z - Ax,['P'[Z - Ax,]. (B-17)

To return the exponent to an expression in the respective x;, recall that z;, = x; — Ax;. Let

the vector of object positions and mean values be defined as

X= [x,,xz,...,xNM]T, X = [xo T AX X A 5 Xy +AxNM]T. (B-18)



Then, the quadratic form in equation (B-17) is equivalent to
L, =[x-%]r[x-%] (B-19)

It remains to show that the normalizing factors associated with the reference conditional and
marginalized densities of equation (B-2) produce that of equation (B-6). This is achieved when

2P |F [2n]*v [P,

ref *

= 2o [ 2062 (B-20)
[or;

From equation (B-8), the determinant of the reference posterior covariance matrix becomes

o2 Y
I . (B-21)
Ny +p;

The marginal covariance matrix P, of equation (B-13) is decoupled in the x and y Cartesian
coordinates. Hence, if P, is rearranged into block diagonal components corresponding to the two
dimensions, then

Z(

o p|=IP

Al (B-22)

z

Each coordinate covariance matrix takes the form of a symmetric compound matrix of the form

P, =P, =c,I, +ww', (B-23)

Z\ p

T - -
where w = [Gref,csref,... o ] is of size (Ny x 1). Hence, as in reference 15,

2 =ref

P, |= PZ_\ =‘G§IN“‘-(1 +wT[0§IN“ rw),
2 . B-24)
=g [1 + NuOr "é(:'e{ J = GsNMGfef[—pp ;NM J (
P P

Substituting equations (B-21), (B-22), and (B-24) into equation (B-20) verifies the equality.
Thus, the marginal density for object placement takes the form

-, ) =7 : { L~ Jexp(—%[X—XTP;'[X—XD. (B-25)

B-4



Rewriting the exponential in equation (B-25) with the form of P, from equation (B-12) leads to
the following final form for the joint density:

1 DZ 1 Ny ) D
f(x ""’x )= . oy exp{_ (Z(x'_x')h_i_(Y'_y')-'j}
1 Ny [2‘“6‘2)]N,\4 (NM +p;] 20’?, e ] J i )

ol sl lges) ()

(B-26)
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APPENDIX C
GOAL-ORIENTED CURVILINEAR MOTION

This appendix describes the goal-oriented curvilinear motion (GOCM) model that is
integrated as an external process within the search evaluation capability. The essence of GOCM
kinematic modeling is as follows. All GOCM vehicular motion is modeled as being achieved
under the condition of constant angular and radial acceleration. That is, let C and S denote
constant change of course and speed rates, where C and S represent the vehicle course and speed,
respectively, as functions of time. Then, for an initial time ty and arbitrary time t,

C(t) = C(t,) +(t—t,)-C and S(t) =S(t,)+(t—t,)-S. Using x(t) =[x(t) y(t) x(t) y(OI
to denote a Cartesian coordinate representation of platform position and velocity, then

C(t) = tan ' (X(t)/y(t)) and S(t) = {/X(t)* + y(t)> . To achieve constant velocity, course and
speed rates are set to zero. This condition is indicative of a goal state satisfaction. More
generally, the desired course and speed, Cgoal and Sgoal, Will deviate from current values and
induce a maneuvering trajectory. Consider AT as a search evaluation update interval. Let AT,
denote the time necessary to achieve the first goal, regardless of which goal parameter it
corresponds to. With maneuver times defined as

Cooa — C(t S o — S(t
AT, = Min(M,ATJ, A= Min(|0°"'—.(°—)|—,AT) : (C-1)
C S

and with AT, = Min(AT,., AT ), the GOCM equations of state can be summarized as

1 0 A-AT B-AT
H=0(t,0x(t,),  Dn=|0 | TEAT A (C2)
X = 5 U)X ~ ) = 5 5
. . . 0 0 Dc Ds
0 0 —Ds Dc
where Dc = (1+ yATS)cos(CATC) , Ds=(1+ yATS)sin(CATC) s Y= S/S(to) ’
8 = (1+yATy) - (AT — AT,.) —y - (AT — AT,)*/2, and
A-AT=(1 +YAT1)Sm(CCATC) —y{l —cos'(ZCAT.)} + Beos(CAT),
: y (C-3)
o YATgC"S(CATc) + y[s‘“(.CZAT')} +85in(CAT,.).

The GOCM model will produce search trajectories that exhibit a high degree of regularity.
In particular, the sensor coverage methodology discussed in section 3 is applicable if the update
interval AT is selected to constrain course and speed changes to nominal values where trajectory
segments are approximately linear. Platform turn rates can be set to achieve specific search



patterns such as a “mow the lawn” path plan. Specifically, at the completion of a search leg,
maintaining the speed S and setting Cgoa to C(t) + 180° and C= S/R, will produce adjacent
swaths of width 2Rp. In addition, the area covered by the search swath from such a trajectory is
identical to that obtained had a straight-line path been executed. To show this, observe that the
area covered by a sensor of detection radius Rp during a turn of 6 radians following a trajectory
with radius of curvature of Rc, Rc > Rp is

Ar=62-(R.+Rp) —(Rc —Rp)?)=0-2RR,. (C-4)
A straight-line trajectory of swath width 2Rp will cover an area of

Ag =2R,, -SAT,. (C-5)
With Rc = Rp and AT, =60/C =0R /S,

A, =20R] =2R -SAT.. (C-6)

With speed S constant, the constraint C = S/R, yields a constant area coverage per unit
time for non-overlapping search trajectories regardless of how often directed turns are made. As
the probability assessments of section 2 are measures on sets relatable to area coverage, this

result is useful for validating the calculated search performance against theoretical predictions
using constant velocity search paths. Search path length L; =S-AT. = 6 R is also identical for

the straight and curvilinear trajectories under these conditions.
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